T

C++20:

An Overview

Rainer Grimm

Training, Mentoring, and
Technology Consulting

T

C++26

Core Language Library Concurrency

D Reflection D stringand string view D std: :execution
|:| Contracts |:| Format extensions
D Placeholder D std::inplace vector

|:| static assert extension D Range improvements
[] Template improvements [] constexpr extensions
[] delete with reason [] Linear algebra support

D std: :submdspan

| | Debugging support

T

C++26

Core Language Library Concurrency

- Reflection D stringand string view D std: :execution
- Contracts |:| Format extensions
- Placeholder D std::inplace vector

- static assert extension D Range improvements
B Template improvements [] constexpr extensions
B delete with reason [] Linear algebra support

D std: :submdspan

| | Debugging support

e

Reflection

Reflection is the ability of a program to examine, introspect, and modify its
structure and behavior.

int main() {

constexpr auto r = *“*int;
typename[:r:] x = 42; S/ Same as: int x = 42;
typename| :**char:] c = '*'; J/ Same as: char ¢ = "¥';

static assert{std::same as<decltype(x), int>);
static_assert(std::same_as<decltype(c), char>);
assert(x == 42);

assert(c == "¥');

= AA: Reflection Operator creates a reflection value from its operand (*~int and "~”“char)
= [:refl:]: Splicercreates a grammatical element from a reflectionvalue ([:r:] and [:~"char:])
= Reflection Value is arepresentation of program elements as a constant expression

Reflection

= Reflection
* Proposal P2996R5
* s a minimal viable product
= supports many metafunctions

= Metafunctions
= are declared consteval
= accept the reflection type std: :meta::info

» Reflection Operator (**)
= Creates std::meta::info

daveed. cpp
getSize.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2996r5.html
https://godbolt.org/z/nseTvoGPG
https://godbolt.org/z/bzvMEPzK6

e

Contracts

A contract specifies interfaces for software components in a precise and
checkable way.

* The software component are functions and methods that must fulfill
preconditions, postconditions, and invariants.
= Aprecondition: a predicate that is supposed to hold upon entry in a function.
= Apostcondition: a predicate that is supposed to hold upon exit from the function.
= An assertion: a predicate that is supposed to hold at its point in the computation.

= Contracts are based on the proposal P2961R2.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2961r2.pdf

Contracts

int f(int 1)
pre (i >= @)
post (r: r > 8) {
contract_assert (i >= 8);
return i+1;

pre and post

» adds a precondition (postcondition). A function can have an arbitrary number of preconditions
(postconditions). They can be intermingled arbitrarily.

= are contextual keywords
= are positioned at the end of the function declaration

post

= can have a return value. An identifier must be placed before the predicate, followed by a colon.
contract assert

» |s a keyword. Otherwise, it could not be distinguished from a function call.

contract.cpp

https://godbolt.org/z/Wd7q3eMGf

e

Placeholders

Placeholders are a nice way to highlight variables that are no longer needed.

Placeholder
= |s the underscore()
= can be used as often as you like
= does not emit a warning when not used
= |s frequently used in Python

placeholder2.cpp

https://godbolt.org/z/habvG11os

e

static assert extension

Syntax of static assert

» C++1l: static assert(compile time predicate, unevaluated string)
= C++17:static assert(compile time predicate)

= C++26: static assert(compile time predicate, user-defined type)
» the user-defined type must have the following properties:
» hasasize() method that produces an integer
» hasadata () method that produces a pointer of character type such that
* the elements inthe range [data (), data()+size()) arevalid. (p2741r3)

static assert26.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2741r3.pdf
https://godbolt.org/z/qqea8o5d9

e

Template Improvements

Pack Indexing enables the index access on parameter packs.

Pack indexing
= May be your favorite template improvement if you are template metaprogramming friend
» |s based on the proposal P2662R3

packIndexing.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2662r3.pdf
https://godbolt.org/z/h4en7Wa6h

e

delete with Reason

With C++26, you can specify a reason for your delete.

= delete With reason

= will become best practice
» |s based on the Proposal p2573r2

deleteReason.cpp

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2573r2.html
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:deleteReason.cpp,fontScale:16,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:1,endLineNumber:2,positionColumn:1,positionLineNumber:2,selectionStartColumn:4,selectionStartLineNumber:1,startColumn:4,startLineNumber:1),source:'//+deleteReason.cpp%0A%0A%23include+%3Ciostream%3E%0A%0A%0Avoid+func(double)%7B%7D%0A%0Atemplate+%3Ctypename+T%3E%0Avoid+func(T)+%3D+delete(%22Only+for+double%22)%3B%0A%0Aint+main()%7B%0A%0A++++std::cout+%3C%3C+!'%5Cn!'%3B%0A%0A++++func(3.14)%3B%0A++++func(3.14f)%3B%0A++%0A++++std::cout+%3C%3C+!'%5Cn!'%3B%0A%0A%7D%0A'),l:'5',n:'1',o:deleteReason.cpp,t:'0')),k:59.633027420659886,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:gsnapshot,filters:(b:'0',binary:'1',binaryObject:'1',commentOnly:'0',debugCalls:'1',demangle:'0',directives:'0',execute:'0',intel:'0',libraryCode:'0',trim:'1',verboseDemangling:'0'),flagsViewOpen:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-std%3Dc%2B%2B2c',overrides:!(),selection:(endColumn:1,endLineNumber:1,positionColumn:1,positionLineNumber:1,selectionStartColumn:1,selectionStartLineNumber:1,startColumn:1,startLineNumber:1),source:1),l:'5',n:'0',o:'+x86-64+gcc+(trunk)+(Editor+%231)',t:'0')),k:1.703800783447426,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:output,i:(compilerName:'EDG+(experimental+reflection)',editorid:1,fontScale:16,fontUsePx:'0',j:1,wrap:'1'),l:'5',n:'0',o:'Output+of+x86-64+gcc+(trunk)+(Compiler+%231)',t:'0')),k:38.6631717958927,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

T

C++26

Core Language Library Concurrency

D Reflection - stringand string view D std: :execution
|:| Contracts - Format extensions
D Placeholder - std::inplace vector

|:| static assert extension - Range improvements
[] Template improvements B constexpr extensions
[] delete with reason B Linear algebra support

- std: :submdspan

B Debugging support

e

stringand string view

= Testing for success or failure of <charconv> functions

= to chars and from chars wasinconvenienttotest: if (res.ec == std::errc{})
* res can be directly compared with bool: if (res)

= Interfacing stringstreams with std: :string view

const mystring str;

stringstream sl (""sv);
stringstream sl (str);
s2.str(""sv);

= Concatenation of strings and string views

std: :string calculate(std::string view prefix)
{
return prefix + get string(); // NO ERRCER

}

T

stringand string view

= Arithmetic overloads of std::to stringanduse std::format

auto loc = std::locale("uk UA.UTF-8"); iostr‘eams:
std: :locale: :global (loc) ;
std: :cout.imbue (loc) ; 1 234
setlocale (LC ALL, "C"};

— 1 234,5

std: :cout << "iostreams:\n";
std::cout << 1234 << "\n"; -
std::cout << 1234.5 << "\n"; to_str‘lng:

std: :cout << "\nto string:\n"; 1234
std: :cout << std::to string(l234) << "\n"; 1234 .500000
std: :cout << std: :tD_string(LEEil.E} << "\n";

setlocale (LC ALL, "uk UA.UTF-8");

to_string (uk UA.UTF-8 C locale):

std::cout << "\nto string (uk UA.UTF-8 C locale):\n"; 1234
std: :cout << std: :to_strir‘.gl{il&il} << "\n";
std::cout << std::to string(1234.5) << "\n"; 1234 ,500000

std::cout << std::format(std::locale{"uk UA.UTF-8"}, "{:L}", 1234.5) << '\n";

e

std::inplace vector

std::1inplace vector

» dynamically-resizable vector with compile-time fixed capacity

= contiguous embedded storage in which the elements are stored within the vector object
itself

= drop-in replacement for std: :vector

= When std::inplace vector? (PO843R8)

= memory allocation is not possible

= memory allocation imposes an unacceptable performance penalty

= allocation of objects with complex lifetimes in the static-memory segment is required

» std::array IS not an option, e.g., if non-default constructible objects must be stored
= a dynamically-resizable array is required within constexpr functions

= the storage location of the inplace vector elements is required to be within the
inplace vector objectitself (e.g. to support memcpy for serialization purposes)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p0843r8.html

e

std: :format

= Pointers

= Before C++26, only void, const void,and std::nullptr t pointer types are

valid.
= |f you want to display the address of an arbitrary pointer, you must cast itto (const)

void*.

= Newline
" println ()

e

Ranges Improvements

The ranges library will get new functions:
" std::ranges::generate random

" std::ranges::concat view

" std::ranges::generate random(fltArray, g, d)
= uses the generator g and the distribution d to create the random numbers
» |s equivalent to the following loop

for (autes 1 : fltArray)
el = d(e);

e

constexpr Extensions

More algorithm become constexpr

" std::stable sort
" std::stable partition
" std::inplace merge

= This is also true for their counterparts in the ranges library.

e

Linear Algebra Support

<linalg>is a free function linear algebra interface based on the BLAS.

= BLAS: Basic Linear Algebra Subprograms is a specification that prescribes a
set of low-level routines for performing common linear algebra operations
= vector addition
= scalar multiplication
» |linear combinations
= maitrix multiplication

» These operations are the de facto standard low-level routines for linear
algebra libraries.

T

std: :submdspam

template<class T, class E, class L, class A,

std: : Submdspan class ... SliceArgs)
auto submdspan({mdspan<T,E,L,A> x, SlicefArgs ... args);
int* ptr = .. _;
int N = ...; // subrange with stride
mdspan a(ptr, N); auto a sub3 = submdspan(a, strided slice{l, 7, 2}
static_assert{decltype(a_subE}::rank{} =— 1) ;
// subspan of a single element assert(&a sub3(0) == &a(l));
auto a subl = submdspan(a, 1); assert(&a sub3(3) == &a(7));
static assert (decltype(a subl)::rank() == 0); assert(a sub3.extent (0) == 4};
assert(&a subl() == &al(l});
// full range
// subrange auto a sub4 = submdspan(a, full extent);

auto a sub2 = submdspan(a, tuple{l, 4}); static assert (decltype(a sub4)::rank() == 1);
static assert(decltype(a sub2)::rank() == 1); assert(a sub4(0) = a(0)};
assert(&a sub2(0) == &a(l)); assert(a_subd.extent (0) == a.extent (0));

assert{(a sub2.extent (0) == 3};

Debugging Support I

C++26 has three functions to deal with debugging.

» std::breakpoint: pauses the running program when called and passes the control to
the debugger

= std::breakpoint if debugging:calls std::breakpoint If
std::1s debugger present returns true

= std::is debugger present:checks whether a program is running under the control
of a debugger

T

C++26

Core Language Library Concurrency

D Reflection D stringand string view - std: :execution
|:| Contracts |:| Format extensions
D Placeholder D std::inplace vector

|:| static assert extension D Range improvements
[] Template improvements [] constexpr extensions
[] delete with reason [] Linear algebra support

D std: :submdspan

| | Debugging support

e

std: :execution

std: :execution provides “a Standard C++ framework for managing
asynchronous execution on generic execution resources”. (P2300R10)

" std::execution

= previously known as executors or senders/receivers

= stdexec is the reference implementation of this proposal. It is a complete implementation,
written from the specification in this paper, and is current with \R8.

» Has three key abstractions: schedulers, senders, and receivers, and a set of customizable
asynchronous algorithms.

godbolt

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html
https://github.com/NVIDIA/stdexec
https://godbolt.org/z/3cseorf7M

std: :execution

The “Hello word” program of the proposal P2300R10.

using namespace std::execution;

scheduler auto sch = thread pool.scheduler();
sender auto begin = schedule(sch);
sender aute hi = then(begin, []{
std: :cout << "Hello world! Have an int.";
return 13;
1) ;
sender auto add 42 = then(hi, [](int arg) { return arg + 42;

aute [1] = this thread::sync wait (add 42) .value();

}):

W, I:_I_'] I:_I_'] I:_I_'] I:_I_'] D'x"l

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html

e

std: :execution

= EXxecution resources
» represent the place of execution
» don‘t need a representation in code

= Scheduler

= represent the execution resource
= The scheduler concept is defined by a single sender algorithm: schedule.

= The algorithm schedule returns a sender that will complete on an execution resource
determined by the scheduler.

execution: :scheduler auto sch = thread pool.scheduler
execution::sender auto snd = execution::schedule(sch
// snd 1is a sender (see below) describing the creation of a new execution resource

// on the execution resource associated with sch

std: :execution

Sender factories

execution:
execution:
execution:
execution:

execution:

:schedule
:just

:just error
:Just stopped

:read_env

Sender consumer

this thread::sync wait

e

* Sender adaptors

execution:
execution:
execution:
execution:
execution:
execution:
execution:
execution:
execution:
execution:

execution:

:stopped as error
:bulk
:split

:when all

:continues on
:then

:upon_ *
:let =
:starts_on
:into variant

:stopped as optional

e

std: :execution

Sender describe work

» send some values if a receiver connected to that sender will eventually receive said
values

= Receivers stops the workflow
» it supports three channels: value, error, stopped

execution: :scheduler auto sch = thread pool.scheduler
execution: :sender auto snd = execution::schedule(sch
execution: :sender auto cont = execution::then(snd

std: :fstream file{ "result.txt"

file compute result

this thread: :sync _wait(cont
// at this point, cont has completed execution

T

C++26

Core Language Library Concurrency

D Reflection D stringand string view D std: :execution
|:| Contracts |:| Format extensions
D Placeholder D std::inplace vector

|:| static assert extension D Range improvements
[] Template improvements [] constexpr extensions
[] delete with reason [] Linear algebra support

D std: :submdspan

| | Debugging support

T

Blog: www.ModernesCpp.com
Mentoring: www.ModernesCpp.org

Rainer Grimm

Training, Mentoring, and
Technology Consulting

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++26
	Slide 3: C++26
	Slide 4: Reflection
	Slide 5: Reflection
	Slide 6: Contracts
	Slide 7: Contracts
	Slide 8: Placeholders
	Slide 9: static_assert extension
	Slide 10: Template Improvements
	Slide 11: delete with Reason
	Slide 12: C++26
	Slide 13: string and string_view
	Slide 14: string and string_view
	Slide 15: std::inplace_vector
	Slide 16: std::format
	Slide 17: Ranges Improvements
	Slide 18: constexpr Extensions
	Slide 19: Linear Algebra Support
	Slide 20: std::submdspam
	Slide 21: Debugging Support
	Slide 22: C++26
	Slide 23: std::execution
	Slide 24: std::execution
	Slide 25: std::execution
	Slide 26: std::execution
	Slide 27: std::execution
	Slide 28: C++26
	Slide 29

