
Rainer Grimm

Training, Mentoring, and 

Technology Consulting

Concurrency 

Improvements in C++20: 

A Deep Dive



C++20 - Concurrency



Atomics

Atomics are the foundation of the C++ memory model

Atomic operations on atomics define the synchronization and ordering constraints

▪ Synchronization and ordering constraints hold for atomics and non-

atomics

▪ Synchronization and ordering constraints are used by the high-level 

threading interface

▪ Threads and tasks

▪ Mutexe and locks

▪ Condition variables

▪ ...

 



Atomics

▪ The atomic flag  std::atomic_flag

▪ Has a very simple interface (clear and test_and_set).

▪ Is the only data type guaranteed to be lock free.

▪ std::atomic

std::atomic<T*>

std::atomic<integral types>

std::atomic<user-defined types>

std::atomic<floating points> (C++20)

std::atomic<smart pointers> (C++20)



Atomics

Operation (std::atomic_flag) Description

test_and_set Sets the value and returns the previous value.

clear Clears the value.

fetch_mult.cpp

Operation (std::atomic) Description

is_lock_free Checks if the atomic object is lock-free.

load Returns the value of the atomic.

store Replaces the value of the atomic with the non-atomic.

exchange Replaces the value with the new value. Returns the old value.

compare_exchange_weak

compare_exchange_strong

atom.compare_exchange_strong(expect, desir)

▪ If atom is equal to expect returns true, atom becomes desir.
▪ If not returns false, expect is updated with atom.

fetch_add, +=

fetch_sub, -=

Adds (substracts) the value and returns the previous value.

++, -- Increments or decrements the atomic.

https://godbolt.org/z/YbMarGvoh


Atomics (C++20)

▪ std::atomic_flag and std::atomic

▪ Enable synchronization of threads

▪ atom.notify_one(): Notifies one waiting operation

▪ atom.notify_all(): Notifies all waiting operations

▪ atom.wait(val): Waiting for a notification and blocks if atom == val

▪ The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/xGrjGs814


C++11 has std::shared_ptr for shared ownership.

▪ General rule: use smart pointers

▪ But:

▪ The handling of the control block is thread-safe.

▪ Access to the resource is not thread-safe.

▪ Solution in C++20:
▪ std::atomic<std::shared_ptr>

▪ std::atomic<std::weak_ptr>

Atomics (C++20)



Atomics

Three reasons for atomic smart pointers.

▪ Consistency

▪ std::shared_ptr is the only non-atomic type that supports atomic operations

▪ Correctness

▪ The correct use of the atomic operation weighs on the shoulder of the user 

very error-prone

std::atomic_store(&sharPtr, localPtr) != sharPtr = localPtr

▪ Speed

▪ std::shared_ptr is designed for the general use



Atomics (C++20)

std::atomic_ref (C++20) applies atomic operations to the referenced 

object

▪ Writing and reading of the referenced object is no data race

▪ The lifetime of the referenced object must exceed the lifetime of std::atomic_ref

▪ std::atomic_ref provides the same interface as std::atomic

▪ std::atomic_ref

std::atomic_ref<T*>

std::atomic_ref<integral types>

std::atomic_ref<user-defined types>

std::atomic_ref<floating points> 

atomicReference.cpp

https://godbolt.org/z/Eh6jcbYGz


Semaphores (C++20)

Semaphores are synchronization mechanisms to control access to a 

shared variable.

A semaphore is initialized with a counter greater than 0

▪ Requesting the semaphore decrements the counter

▪ Releasing the semaphores increments the counter 

▪ A requesting thread is blocked if the counter is 0

▪ C++20 support two semaphores.
▪ std::counting_semaphore

▪ std::binary_semaphore (std::counting_semaphore<1>)



Semaphores (C++20)

Member Function Description

counting_semaphore::max() Returns the maximum value of the counter.

sem.release(upd = 1) Increases the counter by upd and unblocks threads acquiring 

the semaphore.

sem.acquire() Decrements counter by 1. Blocks if the counter is 0.

sem.try_acquire() Tries to decrement the counter by 1. Don’t block f the counter is 

0.

sem.try_acquire_for(relTime) Decrement the counter by 1. Blocks for at most for the time 
duration relTime if the counter is 0.

sem.try_acquire_until(absTime) Decrement the counter by 1. Blocks at most until the time point 
absTime if counter is 0.

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/Y6sMEra11
https://godbolt.org/z/YbKET4KdT


▪ The sender sends a notification.

▪ The receiver is waiting for the notification while holding the mutex.

Condition Variables

To protect against spurious wakeup and lost wakeup, the wait member function 

should be used with a predicate.

Member Function Description

cv.notify_one() Notifies one waiting thread

cv.notify_all() Notifies all waiting threads

Member Function Description

cv.wait(lock, ... ) Waits for the notification

cv.wait_for(lock, relTime, ... ) Waits for the notification for a time duration

cv.wait_until(lock, absTime, ... ) Waits for the notification until a time point



Condition Variables

Thread 1: Sender

▪ Prepares  the work

▪ Notifies the receiver

// Prepares the work

{

lock_guard<mutex> lck(mut);

ready = true;

}

condVar.notify_one();

Thread 2: Receiver

▪ Waits for its notification while holding the lock

▪ Gets the lock

▪ Checks and eventually continues to sleep

▪ Completes the work

▪ Releases the lock

{

unique_lock<mutex>lck(mut);

condVar.wait(lck,[]{ return ready; });

// Completes the work

}   // Releases the look

conditionVariable.cpp

https://godbolt.org/z/j3nqn7xn9


Performance Test: Ping Pong Game

▪ One thread executes a ping function, and the other a pong function. 

▪ The ping thread waits for the notification of the pong thread and sends the 
notification back to the pong thread.

▪ The game stops after 1’000’000 ball changes.

pingPongConditionVariable.cpp

pingPongAtomicFlag.cpp

pingPongAtomicBool.cpp

pingPongSemaphore.cpp

Execution Time Condition Variables Atomic Flag Atomic Bool Semaphores

Windows 0.7 sec 0.3 sec 0.4 sec 0.4 sec

Linux (virtualized) 21 sec 1.8 sec 2 sec 1.6 sec

https://godbolt.org/z/edPbMf3zr
https://godbolt.org/z/7nba79379
https://godbolt.org/z/qdnde34MG
https://godbolt.org/z/6zT6sczvn


A thread waits at a synchronization point until the counter becomes zero. 

▪ latch is useful for managing one task by multiple threads.

Latches and Barriers (C++20)

Member Function Description

lat.count_down(upd = 1) Atomically decrements the counter by upd without blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait().

workers.cpp

https://godbolt.org/z/xacP189En


▪ barrier is helpful to manage repetitive task throug muliple threads.

▪ The constructor gets a callable.

▪ In the completion phase, the callable is executed by an arbitrary thread.

Latches and Barriers (C++20)

Member Function Description

bar.arrive(upd = 1) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step is done.

bar.arrive_and_wait() Equivalent to arrive(); wait().

bar.arrive_and_drop() Decrements the counter for the current and the subsequent phase by one.

fullTimePartTimeWorkers.cpp

https://godbolt.org/z/xv3YhqY8b
https://godbolt.org/z/K34dov53v


Cooperative Interruption (C++20)

Each running entity can be cooperatively interrupted.

▪ std::jthread and std::condition_variable_any support an explicit 

interface for the cooperative interruption.

Receiver (std::stop_token stoken)

Member Function Description

stoken.stop_possible() Returns true if stoken has an associated stop state.

stoken.stop_requested() true if request_stop() was called on the associated 
std::stop_source src, otherwise false.



Cooperative Interruption (C++20)

Sender (std::stop_source)

Member Function Description

src.get_token() If stop_possible(), returns a stop_token for the associated stop state.
Otherwise, returns a default-constructed (empty) stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and request_stop() was called by one of 
the owners.

src.request_stop() Calls a stop request if stop_possible() and !stop_requested(). 
Otherwise, the call has no effect.

interruptJthread.cpp

https://godbolt.org/z/3jov4PMhz


Cooperative Interruption (C++20)

std::stop_source and std::stop_token are a general 

mechanism for sending a signal. They share a stop state.

You can send a signal to any running entity.

std::stop_source stopSource;

std::stop_token stopToken = stopSource.get_token();

void function(std::stop_token stopToken){

if (stopToken.stop_requested()) return;

} 

std::thread thr = std::thread(function, stopToken);

stopSource.request_stop();

signalStopRequests.cpp

https://godbolt.org/z/Ge5dEGzf1


std::jthread (C++20)

std::jthread joins automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};       

std::cout << "t.joinable(): " << t.joinable();

thread.cpp

jthread.cpp

https://godbolt.org/z/s89vnqscP
https://godbolt.org/z/jjKdKK6Yo


Synchronized Output Streams (C++20)

Synchronized output streams allow threads to write without interleaving on 

the same output stream. 

▪ Predefined synchronized output streams

std::osyncstream for std::basic_osyncstream<char> 

std::wosyncstream for std::basic_osyncstream<wchar_t>

▪ Synchronized output streams

▪ Output is written to the internal buffer of type std::basic_syncbuf

▪ When the output stream goes out of scope, it outputs its internal buffer



Synchronized Output Streams (C++20)

▪ Permanent variable synced_out

{

    std::osyncstream synced_out(std::cout);

    synced_out << "Hello, ";

    synced_out << "World!";

    synced_out << std::endl; // no effect

    synced_out << "and more!\n";

}  // destroys the synced_output and emits the internal buffer

▪ Temporary Variable

std::osyncstream(std::cout) << "Hello, " << "World!\n";

sequencedOutput.cpp

https://godbolt.org/z/7osvKeMs5


C++20 - Concurrency



Rainer Grimm

Training, Mentoring, and 

Technology Consulting

Blog: www.ModernesCpp.com

Mentoring: www.ModernesCpp.org

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++20 - Concurrency
	Slide 3: Atomics
	Slide 4: Atomics
	Slide 5: Atomics
	Slide 6: Atomics (C++20)
	Slide 7: Atomics (C++20)
	Slide 8: Atomics
	Slide 9: Atomics (C++20)
	Slide 10: Semaphores (C++20)
	Slide 11: Semaphores (C++20)
	Slide 12: Condition Variables
	Slide 13: Condition Variables
	Slide 14: Performance Test: Ping Pong Game
	Slide 15: Latches and Barriers (C++20)
	Slide 16: Latches and Barriers (C++20)
	Slide 17: Cooperative Interruption (C++20)
	Slide 18: Cooperative Interruption (C++20)
	Slide 19: Cooperative Interruption (C++20)
	Slide 20: std::jthread (C++20)
	Slide 21: Synchronized Output Streams (C++20)
	Slide 22: Synchronized Output Streams (C++20)
	Slide 23: C++20 - Concurrency
	Slide 24

