
Rainer Grimm

Training, Mentoring, and

Technology Consulting

Best Practices

from the C++ Core

Guidelines

Guidelines

Best Practices for the Usage of C++

▪ Why do we need guidelines?

▪ C++ is a complex language in a complex domain.

▪ A new C++ standard is published every three years.

▪ C++ is used in safety-critical systems.

Reflect on your coding habits.

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Philosophy

Metarules for the concrete rules.

▪ Express intent and ideas directly in code.

▪ Write in ISO Standard C++ and use support libraries and supporting

tools.

▪ A program should be statically type safe. When this is not possible,

catch run time errors early.

▪ Don't waste resources such as space or time.

▪ Encapsulate messy constructs behind a stable interface.

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Interfaces

Interfaces should

▪ be explicit

▪ be strongly typed

▪ have a low number of arguments

▪ separate similar arguments

void showRectangle(double a, double b, double c, double d);

void showRectangle(Point top_left, Point bottom_right);

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Functions

Ownership semantic of function parameters.

Example Ownership Semantic

func(value) func is an independent owner of the resource

func(pointer*) func has borrowed the resource

func(reference&) func has borrowed the resource

func(std::unique_ptr) func is an independent owner of the resource

func(std::shared_ptr) func is a shared owner of the resource

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Classes and Class Hierarchies

Class hierarchies organize related classes into hierarchical structures.

class versus struct

▪ Use a class if it has an invariant

▪ Establish the invariant in a constructor

struct Point {

 int x;

 int y;

};

class Date {

 public:

Date(int yy, Month mm, char dd);

 private:

 int y;

 Month m;

 char d;

};

Concrete Types

A concrete type (value type) is not part of a type hierarchy. It can be

created on the stack.

A concrete type should be regular.

▪ Default constructor: X()

▪ Copy constructor: X(const X&)

▪ Copy assignment: operator = (const X&) Big Six

▪ Move constructor: X(X&&)

▪ Move assignment: operator = (X&&)

▪ Destructor: ~(X)

▪ Swap operator: swap(X&, X&)

▪ Equality operator: operator == (const X&)

Classes and Class Hierarchies

The Big Six

▪ The compiler can generate them

▪ You can request a special member function via default

▪ You can delete an automatically generated function via delete

▪ Define all of them or none of them (rule of six or rule of zero)

▪ Define them consistently

▪ There are strong dependencies between the big six

Constructor

Don’t define a default constructor that only initializes data members; use

member initialization instead

struct Widget {

Widget() = default;

Widget(int w): width(w) {}

private:

int width{640};

};

Define the default behavior of each object in the class body. Use explicit

constructors for variations of the default behavior.

Conversion Constructor and Operator

Make single-element constructors (conversion constructor) and conversions
operators explicit.

class MyClass{

 public:

 explicit MyClass(A){} // converting constructor

 explicit operator B(){} // converting operator

};

conversionOperator.cpp

convertingConstructor.cpp

https://godbolt.org/z/MoTMhPvTd
https://godbolt.org/z/oG9zYvf5d

Destructors

▪ Define a destructor if a class needs an explicit action at object

destruction

▪ A base class destructor should either be public and virtual, or protected

and non-virtual

▪ public and virtual:

▪ You can destroy instances of derived classes through a base class pointer or reference

▪ protected and non-virtual:

▪ You cannot destroy instances of derived classes through a base class pointer or

reference

▪ Destructors should not fail make them noexcept

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Enumerations

Enumerations are used to define sets of integer values and also a type for

such sets of values.

▪ Use enumerations to represent sets of related named constants

▪ Prefer enum classes over “plain” enums

▪ Specify enumerator values only when necessary
enum class Day: char {

jan = 1,

feb,

...

};

stronglyTypedEnum.cpp

https://godbolt.org/z/jdhWdYWse

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Resource Management: RAII

RAII stands for Resource Acquisition Is Initialization.

▪ Key idea:

▪ Create a local guard object for your resource.

▪ The constructor of the guard acquires the resource and the destructor of the

guard releases the resource.

▪ The C++ run time manages the lifetime of the guard and, therefore, of the

resource.

▪ Implementations

▪ Containers of the STL

▪ Smart pointers

▪ Locks

▪ std::jthread

raii.cpp

https://godbolt.org/z/d4z8ncxWM

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Good Names

▪ Good names are the most important rule for good software.

▪ Good names should

▪ Be self-explanatory. The shorter the scope, the shorter the name.

▪ Don‘t be reused in nested scopes.

▪ Should avoid similar-looking names:

if (i1 && l1 && ol && o1 && o0 && ol && I0 && l0) surprise();

Arithmetic

▪ Don’t mix signed and unsigned arithmetic.

#include <iostream>

int main() {

int x = -3;

unsigned int y = 7;

std::cout << x - y << '\n';

std::cout << x + y << '\n';

std::cout << x * y << '\n';

std::cout << x / y << '\n';

}

signedUnsigned.cpp

https://godbolt.org/z/de8v73eor

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Performance

Wrong optimization

▪ “premature optimization is the root of all evil” (Donald Knuth)

▪ Rule for optimization

▪ Measure with real-world data

▪ Versionize your performance test

▪ Importance of measuring

▪ Which part of the program is the bottleneck?

▪ How fast is good enough for the user?

▪ How fast could the program potentially be?

Performance

Enable Optimization

▪ Use move semantics if possible

▪ Use constexpr if possible

▪ Rely on the optimizer

▪ Write local code

▪ Write simple code

▪ Give the compiler additional hints (noexcept, final)

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Concurrency and Parallelism

Threads

▪ Prefer std::jthread to std::thread

▪ Don’t detach a thread

▪ Pass small amounts of data between threads by value

▪ To share ownership between unrelated threads use std::shared_ptr

threadDetach.cpp

https://godbolt.org/z/baP7ejoKT

Concurrency and Parallelism

▪ Use each tool you can get to validate your concurrent code

▪ ThreadSanitizer

▪ Dynamic code analyzer

▪ Part of clang 3.2 and GCC 4.8

▪ Compile your program with –sanitize=thread -g

▪ CppMem

▪ Static code analyzer

▪ Validates small code snippets, typically including atomics

▪ Gives your deep insight into the C++ memory model

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Error Handling

Error handling consists of

▪ Detect the error

▪ Transmit information about an error to some handler code

▪ Preserve the valid state of a program

▪ Avoid resource leaks

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Constants and Immutability

▪ By default, make objects immutable

▪ Cannot be a victim of a data race

▪ Guarantee that they are initialized in a thread-safe way

▪ Distinguish between physical and logical constness of an object

▪ Casting away const from an original const object is undefined

behavior if you modify it

castAwayConst.cpp

https://godbolt.org/z/3q71fzz66

Constants and Immutability

▪ Physical constness:

▪ The object is const and cannot be changed.

▪ Logical constness:

▪ The object is const but could be changed.

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Templates and Generic Programming

Use

▪ Use templates to express algorithms that apply to many argument types

Interfaces

▪ Use function objects (lambdas) to pass operations to algorithms.

▪ Let the compiler deduce the template arguments.

▪ Template arguments should be at least SemiRegular or Regular.

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

std::array and std::vector

Prefer std::array and std::vector to a C-array

▪ The container size is known at compile time and small std::array

▪ The container size is not known at compile time or big std::vector

▪ std::vector and std::array

▪ know it’s size.

▪ automatically manage its memory (RAII).

▪ allow the protected element access via the at-operator.

▪ have an ideal memory layout.

std::array and std::vector should be your first choice for a sequence

container.

C++ Core Guidelines

Philosophy

Interfaces

Functions

Classes

Enumerations

Resource Management

Expressions and Statements

Performance

Concurrency

Error Handling

Constants

Templates

The Standard Library

Guidelines Support Library

Further Information

C++ Core Guidelines Explained

Beautiful C++

Posts about the C++ Core Guidelines on Modernes C++

Modernes C++ Training

Modernes C++ Mentoring

https://www.pearson.com/store/p/c-core-guidelines-explained-best-practices-for-modern-c-/P200000007274/9780136875673
https://www.pearson.com/en-us/subject-catalog/p/beautiful-c-30-core-guidelines-for-writing-clean-safe-and-fast-code/P200000009446/9780137647842
https://www.modernescpp.com/index.php/category/modern-c
https://www.modernescpp.net/
https://www.modernescpp.org/

Rainer Grimm

Training, Mentoring, and

Technology Consulting

Blog: www.ModernesCpp.com

Mentoring: www.ModernesCpp.org

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: Guidelines
	Slide 4: C++ Core Guidelines
	Slide 5: Philosophy
	Slide 6: C++ Core Guidelines
	Slide 7: Interfaces
	Slide 9: C++ Core Guidelines
	Slide 11: Functions
	Slide 12: C++ Core Guidelines
	Slide 13: Classes and Class Hierarchies
	Slide 14: Concrete Types
	Slide 15: Classes and Class Hierarchies
	Slide 17: Constructor
	Slide 18: Conversion Constructor and Operator
	Slide 19: Destructors
	Slide 20: C++ Core Guidelines
	Slide 21: Enumerations
	Slide 22: C++ Core Guidelines
	Slide 23: Resource Management: RAII
	Slide 24: C++ Core Guidelines
	Slide 25: Good Names
	Slide 26: Arithmetic
	Slide 27: C++ Core Guidelines
	Slide 28: Performance
	Slide 29: Performance
	Slide 30: C++ Core Guidelines
	Slide 32: Concurrency and Parallelism
	Slide 33: Concurrency and Parallelism
	Slide 34: C++ Core Guidelines
	Slide 35: Error Handling
	Slide 36: C++ Core Guidelines
	Slide 37: Constants and Immutability
	Slide 38: Constants and Immutability
	Slide 39: C++ Core Guidelines
	Slide 40: Templates and Generic Programming
	Slide 41: C++ Core Guidelines
	Slide 42: std::array and std::vector
	Slide 43: C++ Core Guidelines
	Slide 44: Further Information
	Slide 45

