Atomics

std::atomic

= Can use a locking mechanism

= Provides partial and full specializations for the following types

std

std:
std:
std:
std:

:atomic<T*>

:atomic<integral types>
:atomic<user-defined types>
:atomic<floating-polnt types> (C++20)

:atomic<smart pointers> (C++20)

= The user-defined type must be trivially copyable.




e

std: :atomic<bool>

The atomic boolean std::atomic<bool>:

= Can explicitly setto true or false.

= Supports the function compare exchange strong.

» Fundamental function for atomic operations
= Compares and sets a value in an atomic operation

= Syntax: bool compare exchange strong(exp, des)

= Strategy: atom.compare exchange strong(exp, des)
*atom == exp *atom = des; returns true

*atom != exp exp = *atom; returns false




T

std: :atomic<bool>

std::vector<int> mySharedWork;

std::atomic<bool> dataReady(false);

void setDataReady () {

mySharedWork={1, 0, 3}; int main () {

dataReady= true; thread tl(waitingForWork) ;

thread t2 (setDataReady):;
tl.join();

void waitingForWork () { t2.join();

while (!dataReady.load()) { for (auto v: mySharedWork) {

sleep for(milliseconds(5)); cout << v << " ",

}
Yy // 123

}
mySharedWork[1]= 2;

sequenced-before
synchronizes-with

atomicCondition.cpp




T

Atomics

is lock free
load

store
exchange

compare exchange weak
compare exchange strong

fetch add, +=
fetch sub, -=

++, --

notify one (C++20)
notify all (C++20)
wait (val) (C++20)

fetch mult.cpp

Checks if the atomic object is lock-free.

Returns the value of the atomic.

Replaces the value of the atomic with the non-atomic.
Replaces the value with the new value. Returns the old value.

atom.compare exchange strong(expect, desir)
" |fatomis equal to expect returns true, atom becomes desir.
= |fnotreturns false, expect is updated with atom.

Adds (substracts) the value and returns the previous value.

Increments or decrements the atomic.
Notifies one thread waiting on the atomic flag.
Notifies all threads waiting on the atomic flag.

Waits for a notification and blocks as long as atom == wval holds.




std: :atomic<smart polinters>

C++11 has std: :shared ptr for shared ownership.

= General rule: use smart pointers

= But:

» The handling of the control block is thread-safe.
= Access to the resource is not thread-safe.




std: :atomic<smart polinters>

Three reasons for an atomic smart pointer.

= Consistency
= std::shared ptr isthe only non-atomic type that supports atomic operations

= Correctness
» The correct use of the atomic operation rests on the shoulder of the user

" std::atomic store(&sharPtr, localPtr) != sharPtr = localPtr

= Speed
= std::shared ptr is designed for general use




std: :atomic<smart polinters>

Partial specialization of std: :atomic
" std::atomic<std::shared ptr<T>>
" std::atomic<std::weak ptr<T>>

All implementations use currently (2023) a locking mechanism.




	Slide 1: Atomics
	Slide 2: std::atomic<bool>
	Slide 3: std::atomic<bool>
	Slide 4: Atomics
	Slide 5: std::atomic<smart pointers>
	Slide 6: std::atomic<smart pointers>
	Slide 7: std::atomic<smart pointers>

