Calculating the Sum of a Vector

1. Single-threaded summation

Performance of all single-threaded summations

e

Operating System Range-based for std::accumulate Locks Atomics

(Compiler) loop

Linux (GCC) 0.07 0.07 3.34 1.34
1.33

Windows (cl.exe) 0.08 0.03 4.07 1.50
1.61

Atomics are 12 - 50 times slower on Linux and Windows than std: :accumulate.

Atomics are 2 - 3 times faster on Linux and Windows than locks.
std::accumulate seems to be highly optimized on Windows.

e

Calculating the Sum of a Vector

2. Multi-threaded summation with a shared variable

Performance of all multi-threaded summations

Operating System (Compiler) std:lock_guard atomic += fetch_add fetch_add (relaxed)
Linux (GCC) 20.81 7.78 7.87 7.66
Windows (cl.exe) 6.22 15.73 15.78 15.01

» Using a shared atomic variable with relaxed semantics and calculating the sum

with four threads' help is about 100 times slower than using a single thread with
the algorithm std: :accumulate.

e

Calculating the Sum of a Vector

3. Thread-local summation

Performance of all thread-local summations

Operating std:lock_- Atomic Atomic Thread- Tasks
System guard using using local
(Compiler) sequential relaxed data

consistency semantics
Linux 0.03 0.03 0.03 0.04 0.03
(GCC)
Windows 0.10 0.10 0.10 0.20 0.10
(clexe)

» |t makes no big difference whether | use local variables or tasks to calculate the
partial sum or if | use various synchronization primitives such as atomics.

» Thread-local data seems to make the program slower.

e

Calculating the Sum of a Vector

1. Single threaded summation
The performance of range-based for loop and std: :accumulate are similar.

2. Multithreaded summation with a shared variable
Synchronization is costly. Minimizing expensive synchronization must be your first goal.

3. Thread-local summation

» The thread-local summation is only two times faster than the single-threaded range-
based for loop or std: :accumulate. The four cores are idle.

Gesamtlast
100%

=L L A g

® CFU1:54,5% @ CFU 2: 0,0% ® CFU 3: 0,0% @ CFU4:182%

‘ The cores can’t get the data fast enough from memory.

	Slide 1: Calculating the Sum of a Vector
	Slide 2: Calculating the Sum of a Vector
	Slide 3: Calculating the Sum of a Vector
	Slide 4: Calculating the Sum of a Vector

