
Rainer Grimm

Training, Mentoring, and

Technology Consulting

C++20
The Small Pearls

C++20

C++20 – The Big Four

C++20 - Core Language

Three-way Comparison Operator

The three-way comparison operator <=> determines for A and B,

whether A < B, A == B, or A > B applies.

▪ The three-way comparison operator

▪ is also called spaceship operator.

▪ can be implemented or defaulted with = default.

▪ The comparison operator created by the compiler

▪ needs the header file <compare>.

▪ is implicit constexpr and noexcept.

▪ compares lexicographically except the == and != operator.

▪ All base classes from left to right

▪ Non-static members in their declaration order

Three-way Comparison Operator

User defined

struct MyInt {

int value;

explicit MyInt(int val): value{val} {}

auto operator<=>(const MyInt& rhs) const { // strong ord.

return value <=> rhs.value;

}

};

Compiler generated

struct MyDouble {

double value;

explicit MyDouble(double val): value{val} {}

auto operator<=>(const MyDouble&) const = default; // partial ord.

};

Three-way Comparison Operator

▪ Special features

▪ The compiler generates comparison expressions from the three-way comparison

order:

a < b (a <=> b) < 0

▪ The three-way comparison operator is symmetric.

a < b (a <=> b) < 0 0 < (b <=> a)

▪ If the data type already has comparison operators, they have higher priority than

the three-way comparison operator.

threeWayComparisonWithInt.cpp

https://godbolt.org/z/Eeb68W3nT

Designated Initialization

Designated initializers are an extension of aggregate initialization.

▪ Aggregate

▪ Array

▪ Class type (class, struct, union)

▪ public members or base classes

▪ No user-defined constructors

▪ No virtual members or base classes

▪ Aggregate Initialization

▪ Can be initialized directly with an initialization list.

▪ The order of the arguments must match the declaration order of the members.

Designated Initialization

Point {

int x;

int y;

};

Designated Initializer

▪ Allows to call the non-static members directly by name using an initializer list.

▪ Point p = {.x = 1, .y = 2};

▪ Members can also have an in-class default value.

▪ If the initializer is missing, the default value is used (exception union).

▪ Narrowing conversion is detected ERROR

designatedInitializerDefaults.cpp

https://godbolt.org/z/EjdahEhex
https://godbolt.org/z/xbGK7fKcE

consteval

consteval generates an immediate function.

▪ Every call of an immediate function generates a constant expression that is

executed at compile time.

consteval

▪ Cannot be applied to destructors or functions that allocate or deallocate.

▪ Has the same requirements as a constexpr function.

▪ Implies that the function is inline.

consteval int sqr(int n) {

 return n * n;

}

constexpr int r = sqr(100); // OK

constexpr int x = 100;

int r2 = sqr(x); // Error

constinit

constinit guarantees that a variable with static storage duration is

initialized at compile time.

▪ Global objects or objects declared with static or extern have static storage

duration.

▪ Objects with a static storage duration are allocated at the program start and

deallocated at its end.

constinit

▪ Avoids the static initialization order fiasco.

▪ Variables are not constant.

https://www.modernescpp.com/index.php/c-20-static-initialization-order-fiasco

constinit

// sourceSIOF1.cpp

int square(int n) {

return n * n;

}

auto staticA = square(5);

// mainSOIF1.cpp

#include <iostream>

extern int staticA;

auto staticB = staticA;

int main() {

std::cout << "staticB: " << staticB;

}

Template and Lambda Improvements

▪ New non-type template-parameters

▪ Floating-point numbers

▪ Classes with constexpr constructor

▪ Template lambdas allow defining a lambda expression that can only be

used for certain types.

auto foo = []<typename T>(const std::vector<T>& vec) {

// do vector specific stuff

};

 A concept can be used instead of a type parameter T.

templateLambda.cpp

https://godbolt.org/z/fW5Gexbq9

C++20 - Library

std::span

std::span stands for an object that refers to a continuous sequence of

objects.

▪ std::span

▪ Is never an owner.

▪ The referenced area can be an array, a pointer with a length, or a std::vector.

▪ A typical implementation has a pointer to the first element and its length.

▪ Allows partial access to the continuous sequence of elements.

A std::span knows its length.

printSpan.cpp

https://godbolt.org/z/rKabzb17j

std::span

Modifying a span also modifies the referenced objects.

std::vector vec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

printMe(vec); // displays size and elements

std::span span1(vec);

std::span span2{span1.subspan(1, span1.size() - 2)};

std::transform(span2.begin(), span2.end(),

span2.begin(), [](int i){ return i * i; });

printMe(vec);

printMe(span1);

spanTransform.cpp

https://godbolt.org/z/4rdqY3j6x

Container Improvements

std::string and std::vector can be created and modified at

compile time.

▪ The constructors of std::string, and std::vector constructors

and member functions are constexpr.

▪ The algorithms of the Standard Template Library are declared
constexpr.

If a function is declared as constexpr, it has the potential to run at compile time. !

constexprVector.cpp

https://godbolt.org/z/KKjhfenGY

Container Improvements

std::erase and std::erase_if enable the uniform deletion of the

elements of a container.

▪ std::erase(container, value):

▪ Removes all elements with the value from the container.

▪ std::erase_if(container, predicate):

▪ Removes all elements from the container that fulfill the predicate .

Both algorithms operate directly on the container.!

eraseUpper.cpp

https://godbolt.org/z/c3Majz167

Arithmetic Utilities

Comparing signed and unsigned integers often does not produce the

expected result.

▪ The std::cmp_*-functions perform a safe comparison.

It causes a compile-time error if an argument is not an integer.

Compare Function Meaning

std::cmp_equal ==

std::cmp_not_equal !=

std::cmp_less <

std::cmp_less_equal <=

std::cmp_greater >

std::cmp_greater_equal >=

safeComparison.cpp

https://godbolt.org/z/e6vbaTEfc

Arithmetic Utilities

C++20 supports important mathematical constants.

▪ Need the header file <numbers>

▪ Are defined in the namespace std::numbers

▪ The constants have the data type double.

Constant Meaning

e 𝑒

log2e 𝑙𝑜𝑔2𝑒

log10e 𝑙𝑜𝑔10𝑒

pi 𝜋

inv_pi 1

𝜋

inv_sqrtpi 1

𝜋

Constant Meaning

ln2 𝑙𝑛2

ln10 𝑙𝑛10

sqrt2 2

sqrt3 3

inv_sqrt3 1

3

egamma Euler-Mascheroni constant

phi
ϕ (

1+ 5

2
)

Calendar and Time Zones

The chrono library is extended with additional clocks, time of day, a

calendar, and time zones.

▪ New Clocks
▪ std::chrono::utc_clock

▪ std::chrono::tai_clock

▪ std::chrono::gsp_clock

▪ std::chrono::file_clock

▪ std::chrono::local_clock

▪ Time of Day:

▪ Time since midnight in the format hours:minutes:seconds.

Calendar and Time Zones

▪ Calendar:

▪ Data types represent a year, a month, a weekday, and the n-th day of the week.

▪ Data types can be combined into more complex data types.

▪ The "/" operator allows easy handling of time points.

▪ C++ has two new literals: d for a day and y for a year.

▪ Time zones:

▪ Display dates in different time zones.

timeOfDay.cpp

cuteSyntax.cpp

localTime.cpp

onlineClass.cpp

https://godbolt.org/z/Yr8Kf5aqe
https://godbolt.org/z/d8nMvvfGd
https://godbolt.org/z/8oGEbrGn3
https://godbolt.org/z/sz6MfKesj
https://godbolt.org/z/jeoxTnW41
https://godbolt.org/z/31MorvarG

Formatting Library

The formatting library offers a safe and extensible alternative to the
printf family and extends the I/O streams.

The formatting library requires the header file <format>.

The format specifications follow the Python syntax.

▪ The format specification allows us to

▪ Specify fill letters and text alignment.

▪ Set the sign for numbers.

▪ Specify the width and precision of numbers.

▪ Specify the data type.

Formatting Library

▪ std::format

▪ Returns the formatted string.

▪ std::format_to

▪ Writes the formatted output using an output iterator.

▪ std::format_to_n

▪ Writes a maximum of n characters of the formatted output using an output

iterator.

All three functions follow the same syntax.

Formatting Library

Syntax: std::format(FormatString, Arguments)

std::format("{1} {0}!", "world", "Hello");

▪ The FormatString consists of

▪ Characters: are not changed (exception { and })

▪ Escape sequences: {{ and }} become { and }

▪ Replacement fields:

▪ Introductory character: {

▪ Argument-ID: optional, followed by a format specifier

▪ Colon: optional; introduces the format specifier

▪ End character: }

Formatting Library

The format specifier std::formatter provides formatting rules for

data types.

▪ Elementary data types and std::string:

▪ Standard format specification based on Python’s format specification

▪ Chrono data types:

▪ chrono format specification

▪ Further data types:

▪ User-defined format specification

formatArgumentID.cpp

formatVector.cpp

https://godbolt.org/z/Ycx994s31
https://godbolt.org/z/PehPns3xh

C++20 - Concurrency

Atomics

std::atomic offers specializations for float, double, and long

double.

▪ std::atomic and std::atomic_flag

▪ Allow synchronization of threads

▪ atom.notify_one(): Notifies one waiting operation

▪ atom.notify_all(): Notifies all waiting operations

▪ atom.wait(val): Waiting for notification and blocks as long as atom == val

holds

▪ The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/vdEeoqPPf

C++11 has std::shared_ptr for shared ownership.

▪ General rule: use a smart pointer

▪ But:

▪ The handling of the control block is thread-safe.

▪ Access to the resource is not thread-safe.

▪ Solution:
▪ std::atomic<std::shared_ptr>

▪ std::atomic<std::weak_ptr>

Atomics

Semaphores

Semaphores are synchronization mechanisms for controlling access

to a shared variable.

A semaphore is initialized with a counter greater than 0

▪ Requesting the semaphore decrements the counter

▪ Releasing the semaphores increments the counter

▪ A requesting thread is blocked if the counter is 0.

▪ C++20 support two semaphores.
▪ std::counting_semaphore

▪ std::binary_semaphore (std::counting_semaphore<1>)

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/f8oPnf1xE

A thread waits at a synchronization point until the counter

becomes zero.

▪ latch is useful for managing one task by multiple threads.

Latches and Barriers

Member Function Description

lat.count_down(upd = 1) Atomically decrements the counter by upd without
blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks
until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();

▪ barrier helps manage repeated tasks by multiple threads.

▪ The constructor gets a callable.

▪ In the completion phase, the callable is executed by an arbitrary thread.

Latches and Barriers

Member Function Description

bar.arrive(upd = 1) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step
is done.

bar.arrive_and_wait() Equivalent to wait(arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent
phase by one.

workers.cpp

https://godbolt.org/z/T76P5qYYd

Cooperative Interruption

Each running entity can be cooperatively interrupted.

▪ std::jthread and std::condition_variable_any support an explicit

interface for a cooperative interruption.

Receiver (std::stop_token stoken)

Member Function Description

stoken.stop_possible() Returns true if stoken has an associated
stop state.

stoken.stop_requested() true if request_stop() was called on the
associated std::stop_source src,
otherwise false.

Cooperative Interruption

Sender (std::stop_source)

Member Function Description

src.get_token() If stop_possible(), returns a stop_token for
the associated stop state.
Otherwise, returns a default-constructed (empty)
stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and
request_stop() was called by one of the
owners.

src.request_stop() Calls a stop request if stop_possible() and
!stop_requested(). Otherwise, the call has no
effect.

interruptJthread.cpp

https://godbolt.org/z/G7d8x15j5

Cooperative Interruption

std::stop_source and std::stop_token are a general

mechanism to send a signal.

You can send a signal to any running entity.

std::stop_source stopSource;

std::stop_token stopToken = stopSource.get_token();

void function(std::stop_token stopToken){

if (stopToken.stop_requested()) return;

}

std::thread thr = std::thread(function, stopToken);

stopSource.request_stop();

stopRequested.cpp

https://godbolt.org/z/sMc1Ez3sM

std::jthread

std::jthread joins automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};

std::cout << "t.joinable(): " << t.joinable();

Synchronized Output Streams

Synchronized output streams allow threads to write without

interleaving on the same output stream.

▪ Predefined synchronized output streams:

std::osyncstream for std::basic_osyncstream<char>

std::wosyncstream for std::basic_osyncstream<wchar_t>

▪ Synchronized output streams

▪ Output is written to the internal buffer of type std::basic_syncbuf

▪ When the output stream goes out of scope, it outputs its internal buffer

Synchronized Output Streams

▪ Permanent variable synced_out

{

 std::osyncstream synced_out(std::cout);

 synced_out << "Hello, ";

 synced_out << "World!";

 synced_out << std::endl; // no effect

 synced_out << "and more!\n";

} // destroys the synced_output and emits the internal buffer

▪ Temporary Variable

std::osyncstream(std::cout) << "Hello, " << "World!"

 << std::endl;

C++20 – The Big Four

Rainer Grimm

Training, Mentoring, and

Technology Consulting

Blog: www.ModernesCpp.com

Book: C++20: Get the Details

Mentoring: www.ModernesCpp.org

http://www.modernescpp.com/
https://leanpub.com/c20
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++20
	Slide 3: C++20 – The Big Four
	Slide 4: C++20 - Core Language
	Slide 5: Three-way Comparison Operator
	Slide 6: Three-way Comparison Operator
	Slide 7: Three-way Comparison Operator
	Slide 8: Designated Initialization
	Slide 9: Designated Initialization
	Slide 10: consteval
	Slide 11: constinit
	Slide 12: constinit
	Slide 14: Template and Lambda Improvements
	Slide 15: C++20 - Library
	Slide 16: std::span
	Slide 17: std::span
	Slide 18: Container Improvements
	Slide 19: Container Improvements
	Slide 22: Arithmetic Utilities
	Slide 23: Arithmetic Utilities
	Slide 24: Calendar and Time Zones
	Slide 25: Calendar and Time Zones
	Slide 26: Formatting Library
	Slide 27: Formatting Library
	Slide 28: Formatting Library
	Slide 29: Formatting Library
	Slide 30: C++20 - Concurrency
	Slide 31: Atomics
	Slide 32: Atomics
	Slide 34: Semaphores
	Slide 35: Latches and Barriers
	Slide 36: Latches and Barriers
	Slide 37: Cooperative Interruption
	Slide 38: Cooperative Interruption
	Slide 39: Cooperative Interruption
	Slide 40: std::jthread
	Slide 41: Synchronized Output Streams
	Slide 42: Synchronized Output Streams
	Slide 43: C++20 – The Big Four
	Slide 44

