T

Concurrency
Patterns

Rainer Grimm

Training, Mentoring, and
Technology Consulting

Definition

"Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution."

(Christopher Alexander)

e

Three Types of Patterns

= Architecture pattern
= Fundamental structure
= Software system

= Design pattern
* [nterplay of components
= Focus on a subsystem

= |diome

 |[mplementation of an architecture or design pattern in a programming
language.

e

Components of a Pattern

Name

Also known as
Summary
Motivation
Context
Interaction
Solution
Example

. Consequenses
10.Related pattern
11.Known usages

© 00 NO U AEWDNRE

Concurrency Patterns

Pattern-Oriented Software Architecture

(Volume 2 and 4)

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

Patterns for Concurrent
and Networked Objects

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

—

(/ ?{ Frank Buschmann

Keviin Heaney
Douglas C. Schmide

T

Concurrent Programming in Java

Doug Lea

Concurrent
Programming in Java"
Second Edition

iples and Patterns

i J/u)/,;g("x“’/ﬁ(’ ’—1 é

Java

D Sun

https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2
https://www.google.de/books/edition/Concurrent_Programming_in_Java/-x1S4neCSOYC?hl=en&gbpv=0
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2

T

Concurrency Patterns

Concurrent

Synchronization

Architecture

Patterns

. : :
Dealing with Sharing
= Copied Value

= Thread-Specific Storage N J
= Futures - ~
(N J | Monitor
Object
/Dealing with Mutation A §))

= Scoped Locking

| = Strategized Locking

® Thread-Safe Interface
= Guarded Suspension

- /

T

Concurrency Patterns

Concurrent

Synchronization

Architecture

Patterns

KDeaIing with Sharing
= Copied Value

® Thread-Specific Storage - 7
= Futures 4)
L J B Monitor
Object
/Dealing with Mutation h L J)

= Scoped Locking

| = Strategized Locking

® Thread-Safe Interface
= Guarded Suspension

- J

e

Copied Value

There is no need to synchronize when a thread takes its arguments
by copy and not by reference.

B Data races or lifetime issues are not possible.

copiedValueDataRace.cpp

https://godbolt.org/z/MnEdEPKso

e

Thread-Specific Storage

Thread-specific storage enables global state within a thread.

= Typical use-cases
= Porting a single-thread to multithreaded program
= Compute thread-local and publish the result
» Thread-local logger

threadLocalSummation.cpp

https://wandbox.org/permlink/b6qjsvXHHN8epD0J

T

Future

A future is a non-mutable placeholder for a value, which is set
by a promise.

auto future = std::async([]{ return "LazyOrEager"; });
future.get () ;
Promise: sender Future: receiver

Concurrency Patterns

Concurrent

Synchronization

Architecture

Patterns

/Dealing with Sharing

» Copied Value — Active Object

| = Thread-Specific Storage .

= Futures -
\- / B Monitor
™ Object

/Dealing with Mutation

= Scoped Locking

|| = Strategized Locking

= Thread-Safe Interface
= Guarded Suspension

(S)

e

Scoped Locking

Scoped Locking i1s RAIl applied to locking.

* |dea
» Bind the acquiring (constructor) and the releasing (destructor) of the resource to the
lifetime of an object.
* The lifetime of the object is scoped.
* The C++ run time is responsible for invoking the destructor and releasing the resource.

= C++ Implementation
* std::lock guard andstd::scoped lock

" std::unique lock andstd::shared_lock

scopedLock.cpp

https://godbolt.org/z/4o7avYvfx

e

Strategized Locking

Strategized Locking

= Enables it to use various locking strategies as replaceable components.
» |s the application of the strategy pattern to locking.

= |dea

* You want to use your library in various domains.

= Depending on the domain, you want to use exclusive locking, shared locking, or no
locking.

= Configure your locking strategy at compile time or run time.

e

Strategized Locking

Advantages: Disadvantages:
* Run-time polymorphism = Run-time polymorphism
= Enables it to change the locking * Needs a pointer indirection.

strategy at runtime.

= Compile-time polymorphism

= Compile-time polymorphism
= No cost at runtime

_ _ _ = Produces in the error case a quite
= Flatter object hierarchies challenging to understand error message
(when no concepts are used).

strategizedLockingRuntime. cpp
strategizedLockingCompileTimeWithConcepts.cpp

https://godbolt.org/z/1oM5n97W8
https://godbolt.org/z/r1h64f4Yz

e

Thread-Save Interface

The thread-save interface extends the critical region to an object.

= Antipattern: Each member function uses a lock internally.
* The performance of the system goes down.
» Deadlocks appear when two member functions call each other.

e

Thread-Save Interface

A deadlock due to entangled calls.

struct Critical({
void methodl () {
std::lock guard 1 (mut);

method? () ; int main () {
Critical crit;

} crit.methodl () ;

volid methodZ2 () { }
std::lock guard 1 (mut);

}

std: :mutex mut;

e

Thread-Save Interface

= Solutions:

= All interface member functions (public) use a lock.

= All implementation member functions (protected and private) must
not use a lock.

* The interface member functions call only implementation member
functions.

threadSafelInterface.cpp

https://godbolt.org/z/c5fPK9EK1

e

Guarded Suspension

A guarded suspension consists of a lock and a condition. The
condition has to be fulfilled by the calling thread.

* The calling thread will put itself to sleep if the condition is not meet.
= The calling thread uses a lock when it checks the condition.
* The lock protects the calling thread from a data race or deadlock.

e

Guarded Suspension

» Guarded suspension enables thread synchronization. It is available
IN many variations.

* The waliting thread is notified about the state change or asks for the state
change.

= Push principle: condition variables, future/promise pairs, atomics, latches and barriers,
or semaphores

= Pull principle: not natively supported in C++

* The waiting thread waits with or without a time limit.
= Condition variables, or future/promise pairs

* The notification is sent to one or all waiting threads.
» Shared futures, condition variables, atomics, latches and barriers, or semaphores

bossWorkerFuturePromise. cpp
bossWorkerLatch.cpp

https://godbolt.org/z/qPW5xq5qE
https://godbolt.org/z/xvh55rxjd

Concurrency Patterns

Synchronization Concurrent
Patterns Architecture
.. : : ™
Dealing with Sharing
= Copied Value Active Object
' | = Thread-Specific Storage
= Futures
N = Monitor
(N 15 : : Object
Dealing with Mutation
= Scoped Locking
| = Strategized Locking

= Thread-Safe Interface
= Guarded Suspension

- J

e

Active Object

The active object pattern separates the method execution
from the method invocation.

= Each object owns its own thread.
= Each method invocation is stored in an activation list.
= A scheduler triggers the method execution.

e

Active Object

Proxy:
= Proxy for the member functions on the active object

= Triggers the construction of a request object which goes to the activation list and returns a
future.

= |t runs in the client thread.

Method Request

* Includes all context information to be executed later.
Activation List:

= Has the pending requests objects.

= Decouples the client from the Active Object thread.
Scheduler:

= Runs in the thread of the Active Object.
= Decides with request from the Activation List is executes.

Active Object

= Servant:
* |mplements the member functions of the active objects.
= Supports the interface of the Proxy.

= Future:
» |s created by the Proxy.
* |s only necessary if the request objects returns a result.
= The client uses the future to get the result of the request object.

Active Object

Dynamic Behavior
1. Request construction and scheduling:
= The client invokes the method on the proxy.
= The proxy creates a request and passes it to the scheduler.

* The scheduler enqueues the request on the activation list and returns a
future to the client if the request returns something.

2. Member function execution
* The scheduler determines which request becomes runnable.

* |t removes the request from the activation list and dispatches it to the
servant.

3. Completion:
= Stores eventually the result of the request object in the future.
» Destructs the request object and the future if the client has the result.

sd Active Object _

Client Proxy Future Activation ‘Scheduler Request Servant
List
method()
——
create
0
future
create(fufu re)
requést
enqueue(request)
g —
- dequeue()

getResult()

result

Client Thread

request >

execute() >:_

method()

=

result

setResult(result)

Active Object Thread

= Only the access to the activation
list has to be synchronized

» Clear separation of client and
server

* |Improved throughput due to the
asynchronous execution

= The scheduler can use various
execution policies.

activeObject.cpp

Active Object

e

Advantages: Disadvantages:

If the member function execution is
too fine-grained, the indirection may
cause significant overhead.

The asynchronous member function
execution and the various execution
strategies make the system quite
difficult to debug.

https://godbolt.org/z/966vaYcr5
https://godbolt.org/z/ecjjW8n6P

T

Concurrency Patterns

Concurrent

Synchronization

Architecture

Patterns

(s : :
Dealing with Sharing
= Copied Value

| = Thread-Specific Storage .)
= Futures - ~
E -/ | Monitor
™ Object

/Dealing with Mutation

= Scoped Locking

|| = Strategized Locking

= Thread-Safe Interface
= Guarded Suspension

- /

e

Monitor Object

The monitor object synchronizes the access to an object so that at
most one member function can run at any time.

= Each object has a monitor lock and a monitor condition.

= The monitor lock guarantees that only one client can execute a
member function of the object.

= The monitor condition notifies the waiting clients.

Monitor Object

class Monitor Object/
Client Monitor Object
i + syncMethod1()
L. + syncMethod?2()
+ syncMethod...()
+ syncMethodN()
1.*
Monitor Lock Monitor Condition
+ lock() + notify()
+ unlock() + wait()

Monitor Object

Monitor Object:
= Support member functions, which can run in the thread of the client.

Synchronized Methods:
» |nterface member functions of the monitor object.
= At most, one member function can run at any time
= The member functions should apply the thread-safe interface pattern.

Monitor Lock:

= Each monitor object has a monitor lock.

= Guarantees exclusive access to the member functions.
Monitor Condition:

= Allows various threads to store their member function invocation.

= When the current thread is done with its member function execution, the next thread is
awoken.

Monitor Object .

Advantages: Disadvantages:

= The synchronization is * The synchronization mechanism
encapsulated in the and the functionality are strongly
Implementation. coupled and can, therefore, not

» The member function execution easily be changed.
IS automatically stored and * When the synchronized member
performed. functions invoke an additional

= The monitor object is a simple member function of the monitor
scheduler. object, a deadlock may happen.

monitorObject.cpp

https://godbolt.org/z/1x6x68zrM

T

Concurrency Patterns

Concurrent

Synchronization

Architecture

Patterns

. : :
Dealing with Sharing
= Copied Value

= Thread-Specific Storage N J
= Futures - ~
(N J | Monitor
Object
/Dealing with Mutation A §))

= Scoped Locking

| = Strategized Locking

® Thread-Safe Interface
= Guarded Suspension

- /

T

Blog: www.ModernesCpp.com
Mentoring: www.ModernesCpp.org

Rainer Grimm

Training, Mentoring, and
Technology Consulting

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: Definition
	Slide 3: Three Types of Patterns
	Slide 4: Components of a Pattern
	Slide 5: Concurrency Patterns
	Slide 6: Concurrency Patterns
	Slide 7: Concurrency Patterns
	Slide 8: Copied Value
	Slide 9: Thread-Specific Storage
	Slide 10: Future
	Slide 11: Concurrency Patterns
	Slide 12: Scoped Locking
	Slide 13: Strategized Locking
	Slide 14: Strategized Locking
	Slide 15: Thread-Save Interface
	Slide 16: Thread-Save Interface
	Slide 17: Thread-Save Interface
	Slide 18: Guarded Suspension
	Slide 19: Guarded Suspension
	Slide 20: Concurrency Patterns
	Slide 21: Active Object
	Slide 22: Active Object
	Slide 23: Active Object
	Slide 24: Active Object
	Slide 25: Active Object
	Slide 26: Active Object
	Slide 27: Concurrency Patterns
	Slide 28: Monitor Object
	Slide 29: Monitor Object
	Slide 30: Monitor Object
	Slide 31: Monitor Object
	Slide 32: Concurrency Patterns
	Slide 33

