
Rainer Grimm

Training, Mentoring, and

Technology Consulting

Concurrency in

Modern C++

C++20 - Concurrency

Titelmasterformat durch

Klicken bearbeiten

Coroutines

Coroutines are generalized functions that can be paused and resumed while

saving their state.

Titelmasterformat durch

Klicken bearbeiten

Characteristics

▪ Two new concepts

▪ co_await expression: suspend and resume expression

▪ co_yield expression: supports generators

▪ Typical use cases

▪ Cooperative Tasks

▪ Event loops

▪ Infinite data streams

▪ Pipelines

Titelmasterformat durch

Klicken bearbeiten

Characteristics

Design Principles (James McNellis)

▪ Scalable, to billions of concurrent coroutines

▪ Efficient: Suspend/resume operations comparable in cost to function call

overhead

▪ Open-Ended: Library designers can develop coroutine libraries

▪ Seamless Interaction with existing facilities with no overhead.

▪ Usable in environments where exceptions are forbidden or not available.

Characteristics

A function is a coroutine if it contains a call co_return, co_await, co_yield, or

a range-based for loop co_await.

Function Coroutine

invoke func(args) func(args)

return return statement co_return statement

suspend co_await expression

co_yield expression

resume coroutine_handle<>::resume()

Coroutines: Generators

Generator<int> getNext(int start = 0, int step = 1) {

auto value = start;

while (true) {

co_yield value;

value += step;

}

}

...

auto gen = getNext(-10);

for (int i= 1; i <= 20; ++i) std::cout << gen.next() << " ";

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

infiniteDataStreamWithComments.cpp

https://godbolt.org/z/7WE9Ke9nT

Coroutines: Generators

C++23 has the first concrete coroutine std::generator

▪ std::generator

▪ Generates a sequence of elements

▪ Enables nested calls of generators

std::generator<int> fib() {

co_yield 0;

auto a = 0;

auto b = 1;

for(auto n : std::views::iota(0)) {

auto next = a + b;

a = b;

b = next;

co_yield next;

}

}

std::generator<int> getGenerator() {

co_yield fib();

}

std::generator<int> getElements() {

co_yield std::ranges::elements_of(fib());

}

getGenerator: returns the generator

getElements: returns the next element

Coroutines: Waiting Instead of Blocking

Blocking

Acceptor accept{443};

while (true){

Socket so= accept.accept(); // block

auto req= so.read(); // block

auto resp= handleRequest(req);

so.write(resp); // block

}

Waiting

Acceptor accept{443};

while (true){

Socket so= co_await accept.accept();

auto req= co_await so.read();

auto resp= handleRequest(req);

co_await so.write(resp);

}

Framework

C++20 offers a framework for creating concrete coroutines.

auto gen = coroutineFactory();

gen.next();

auto result = gen.getValue();

▪ The framework consists of three components:

▪ The promise object

▪ The coroutine handle

▪ The coroutine frame

Framework

The promise object needs the following member functions.

Member Functions Description

Default constructor

initial_suspend() Determines if the coroutine suspends before it runs.

final_suspend() Determines if the coroutine suspends before it ends.

unhandled_exception() Called when an exception happens.

get_return_object() Returns the coroutine object (resumable object).

return_value(val) Is invoked by co_return val.

return_void Is invoked by co_return.

yield_value(val) Is invoked by co_yield val.

Framework

The coroutine handle is a non-owning handle to resume or destroy the

coroutine frame from the outside.

The coroutine frame

▪ Heap allocated

▪ Consists of

▪ Promise object

▪ Coroutine parameters

▪ Representation of the suspension point

▪ Local variables

Awaitables and Awaiters

The three promise functions yield_value, inital_suspend, and

final_suspend return Awaiters.

▪ An Awaiter

▪ Is something you can await on

▪ Has to support three functions

Function Description

await_ready Indicates if the result is ready. When it returns false,
await_suspend is called.

await_suspend Schedule the coroutine for resumption or destruction.

await_resume Provides the result for the co__await expr expression.

Two Predefined Awaiters

▪ std::suspend_always

struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }

constexpr void await_suspend(coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

▪ std::suspend_never

struct suspend_never {

constexpr bool await_ready() const noexcept { return true; }

constexpr void await_suspend(coroutine_handle<>) const noexcept {}

constexpr void await_resume() const noexcept {}

};

Awaiters

▪ Steps to get the Awaiter

▪ Look for the co_await operator in the promise object

▪ awaiter = awaitable.operator co_await();

▪ Look for a freestanding co_await operator

▪ awaiter = operator co_await();

▪ The Awaitable becomes the Awaiter

▪ awaiter = awaitable;

The Promise Workflow

The compiler transforms a coroutine into the following workflow.

{

Promise prom;

co_await prom.initial_suspend();

try {

<function body having co_return, co_yield, or co_wait>

}

catch (...) {

prom.unhandled_exception();

}

FinalSuspend:

co_await prom.final_suspend();

}

lazyFutureWithComments.cpp

https://godbolt.org/z/s6aEdYfz8

The Awaiter Workflow

The compiler creates the following workflow based on the Awaitable.

awaitable.await_ready() returns false:

suspend coroutine

awaitable.await_suspend(coroutineHandle) returns:

void:

bool:

another coroutine handle:

resumptionPoint:

return awaitable.await_resume();

Return value of awaitable.await_suspend() Description

void The coroutine keeps suspended and returns to the caller.

bool == true The coroutine keeps suspended and returns to the caller.

bool == false The coroutine is resumed and does not return to the caller.

anotherCoroutineHandle The other coroutine is resumed and returns to the caller.

startJobWithAutomaticResumptionOnThread.cpp

https://godbolt.org/z/nd6YaKchn

Atomics

Atomics are the foundation of C++ memory model

Atomic operations on atomics define the synchronization and ordering constraints

▪ Synchronization and ordering constraints hold for atomics and non-

atomics

▪ Synchronization and ordering constraints are used by the high-level

threading interface

▪ Threads and tasks

▪ Mutexe and locks

▪ Condition variables

▪ ...

Atomics

▪ The atomic flag std::atomic_flag

▪ Has a very simple interface (clear and test_and_set).

▪ Is the only data structure guaranteed to be lock free.

▪ std::atomic

std::atomic<T*>

std::atomic<Integral type>

std::atomic<User-defined type>

std::atomic<floating point> (C++20)

std::atomic<smart pointers> (C++20)

Atomics

Operation Description

test_and set Sets the value and returns the previous value.

clear Clears the value

is_lock_free Checks if the atomic object is lock-free.

load Returns the value of the atomic.

store Replaces the value of the atomic with the non-atomic.

exchange Replaces the value with the new value. Returns the old value.

compare_exchange_weak

compare_exchange_strong

atom.compare_exchange_strong(expect, desir)

▪ If atom is equal to expect returns true, atom becomes desir.
▪ If not returns false, expect is updated with atom.

fetch_add, +=

fetch_sub, -=

Adds (substrct) the value and returns the preious value.

++, -- Increments or decrements the atomic.

fetch_mult.cpp

https://godbolt.org/z/o788T1c7c

Atomics

▪ std::atomic_flag and std::atomic (C++20)

▪ Enable synchronization of threads

▪ atom.notify_one(): Notifies one waiting operation

▪ atom.notify_all(): Notifies all waiting operations

▪ atom.wait(val): Waiting for a notification and blocks as long as atom == val holds

▪ The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/xGrjGs814

C++11 has std::shared_ptr for shared ownership.

▪ General rule: use smart pointer

▪ But:

▪ The handling of the control block is thread-safe.

▪ Access to the resource is not thread-safe.

▪ Solution:
▪ std::atomic_shared_ptr

▪ std::atomic_weak_ptr

Atomics

Atomics

3 reasons for an atomic smart pointer.

▪ Consistency

▪ std::shared_ptr is the only non-atomic type that supports atomic operations

▪ Correctness

▪ The correct use of the atomic operation weighs on the shoulder of the user

very error-prone

std::atomic_store(&sharPtr, localPtr) != sharPtr = localPtr

▪ Speed

▪ std::shared_ptr is designed for general use

Atomics

std::atomic_ref (C++20) applies atomic operations to the referenced

object

▪ Writing and reading of the referenced object is no data race

▪ The lifetime of the referenced object must exceed the lifetime of std::atomic_ref

▪ std::atomic_ref provides the same interface such as std::atomic

▪ std::atomic_ref

std::atomic_ref<T*>

std::atomic_ref<Integral type>

std::atomic_ref<User-defined type>

std::atomic_ref<floating point>

atomicReference.cpp

https://godbolt.org/z/vjYhMzWsK

Semaphores

Semaphores are synchronization mechanisms to control access to a

shared variable.

A semaphore is initialized with a counter greater than 0

▪ Requesting the semaphore decrements the counter

▪ Releasing the semaphores increments the counter

▪ A requesting thread is blocked if the counter is 0.

▪ C++20 support two semaphores.
▪ std::counting_semaphore

▪ std::binary_semaphore (std::counting_semaphore<1>)

Semaphores

Member Function Description

counting_semaphore::max() Returns the maximum value of the counter.

sem.release(upd = 1) Increases the counter atomically by upd and unblocks threads

acquiring the semaphore

sem.acquire() Decrements counter by 1 or blocks until counter is greater than 0.

sem.try_acquire() Tries to decrement the counter by 1 if it is greater than 0.

sem.try_acquire_for(relTime) Tries to decrement the counter by 1 or blocks for at most
relTime if counter is 0

sem.try_acquire_until(absTime) Tries to decrement the counter by 1 or blocks at most until
absTime if counter is 0.

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/Y6sMEra11
https://godbolt.org/z/YbKET4KdT

▪ The sender sends a notification.

▪ The receiver is waiting for the notification while holding the mutex.

Condition Variables

To protect against spurious wakeup and lost wakeup, the wait method should be

used with a predicate.

Member Function Description

cv.notify_one() Notifies one waiting thread

cv.notify_all() Notifies all waiting threads

Member Function Description

cv.wait(lock, ...) Waits for the notification

cv.wait_for(lock, relTime, ...) Waits for the notification for a time period

cv.wait_until(lock, absTime, ...) Waits for the notification until a time point

Condition Variables

Thread 1: Sender

▪ Does its work

▪ Notifies the receiver

// do the work

{

lock_guard<mutex> lck(mut);

ready= true;

}

condVar.notify_one();

Thread 2: Receiver

▪ Waits for its notification while holding the lock

▪ Gets the lock

▪ Checks and continues to sleep

▪ Does its work

▪ Releases the lock

{

unique_lock<mutex>lck(mut);

condVar.wait(lck,[]{return ready;});

// do the work

}

conditionVariable.cpp

https://godbolt.org/z/hc389YKP3

Performance Test: Ping-Pong Game

▪ One thread executes a ping function, and the other a pong function.

▪ The ping thread waits for the notification of the pong thread and sends the
notification back to the pong thread.

▪ The game stops after 1’000’000 ball changes.

pingPongConditionVariable.cpp

pingPongAtomicTwoFlags.cpp

pingPongAtomicOneFlag.cpp

pingPongAtomicBool.cpp

pingPongSemaphore.cpp

https://godbolt.org/z/Eebfhz4fh
https://godbolt.org/z/v9KKTb8js
https://godbolt.org/z/7nba79379
https://godbolt.org/z/qdnde34MG
https://godbolt.org/z/6zT6sczvn

A thread waits at a synchronization point until the counter

becomes zero.

▪ latch is useful for managing one task by multiple threads.

Latches and Barriers

Member Function Description

lat.count_down(upd = 1) Atomically decrements the counter by upd without blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();

workers.cpp

https://godbolt.org/z/bc88nP63r

▪ barrier is helpful for managing repeated tasks by multiple

threads.

▪ The constructor gets a callable.

▪ In the completion phase, the callable is executed by an arbitrary thread.

Latches and Barriers

Member Function Description

bar.arrive(upd = 1) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step is done.

bar.arrive_and_wait() Equivalent to wait(arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent phase by one.

fullTimePartTimeWorkers.cpp

https://godbolt.org/z/K34dov53v

Cooperative Interruption

Each running entity can be cooperative interrupted.

▪ std::jthread and std::condition_variable_any support an explicit

interface for cooperative interruption.

Receiver (std::stop_token stoken)

Member Function Description

stoken.stop_possible() Returns true if stoken has an associated stop state.

stoken.stop_requested() true if request_stop() was called on the associated
std::stop_source src, otherwise false.

Cooperative Interruption

Sender (std::stop_source)

Member Function Description

src.get_token() If stop_possible(), returns a stop_token for the associated stop state.
Otherwise, returns a default-constructed (empty) stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and request_stop() was called by one of
the owners.

src.request_stop() Calls a stop request if stop_possible() and !stop_requested().
Otherwise, the call has no effect.

interruptJthread.cpp

https://godbolt.org/z/be5s5bnoG

Cooperative Interruption

std::stop_source and std::stop_token are a general

mechanism to send a signal.

You can send a signal to any running entity.

std::stop_source stopSource;

std::stop_token stopToken = stopSource.get_token();

void function(std::stop_token stopToken){

if (stopToken.stop_requested()) return;

}

std::thread thr = std::thread(function, stopToken);

stopSource.request_stop();

signalStopRequests.cpp

https://godbolt.org/z/ccn7zxPYj

std::jthread

std::jthread joines automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};

std::cout << "t.joinable(): " << t.joinable();

thread.cpp

jthread.cpp

https://godbolt.org/z/s89vnqscP
https://godbolt.org/z/jjKdKK6Yo

Synchronized Output Streams

Synchronized output streams allow threads to write without

interleaving on the same output stream.

▪ Predefined synchronized output streams

std::osyncstream for std::basic_osyncstream<char>

std::wosyncstream for std::basic_osyncstream<wchar_t>

▪ Synchronized output streams

▪ Output is written to the internal buffer of type std::basic_syncbuf

▪ When the output stream goes out of scope, it outputs its internal buffer

Synchronized Output Streams

▪ Permanent variable synced_out

{

std::osyncstream synced_out(std::cout);

synced_out << "Hello, ";

synced_out << "World!";

synced_out << std::endl; // no effect

synced_out << "and more!\n";

} // destroys the synced_output and emits the internal buffer

▪ Temporary Variable

std::osyncstream(std::cout) << "Hello, " << "World!\n";

sequencedOutput.cpp

https://godbolt.org/z/Y8qx7Mxvq

Rainer Grimm

Training, Mentoring, and

Technology Consulting

Blog: www.ModernesCpp.com

Mentoring: www.ModernesCpp.org

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++20 - Concurrency
	Slide 3: Coroutines
	Slide 4: Characteristics
	Slide 5: Characteristics
	Slide 6: Characteristics
	Slide 7: Coroutines: Generators
	Slide 8: Coroutines: Generators
	Slide 9: Coroutines: Waiting Instead of Blocking
	Slide 10: Framework
	Slide 11: Framework
	Slide 12: Framework
	Slide 13: Awaitables and Awaiters
	Slide 14: Two Predefined Awaiters
	Slide 15: Awaiters
	Slide 16: The Promise Workflow
	Slide 17: The Awaiter Workflow
	Slide 18: Atomics
	Slide 19: Atomics
	Slide 20: Atomics
	Slide 21: Atomics
	Slide 22: Atomics
	Slide 23: Atomics
	Slide 24: Atomics
	Slide 25: Semaphores
	Slide 26: Semaphores
	Slide 27: Condition Variables
	Slide 28: Condition Variables
	Slide 29: Performance Test: Ping-Pong Game
	Slide 30: Latches and Barriers
	Slide 31: Latches and Barriers
	Slide 32: Cooperative Interruption
	Slide 33: Cooperative Interruption
	Slide 34: Cooperative Interruption
	Slide 35: std::jthread
	Slide 36: Synchronized Output Streams
	Slide 37: Synchronized Output Streams
	Slide 38

