o

Concurrency In
Modern C++

Rainer Grimm

Training, Mentoring, and
Technology Consulting

C++20 - Concurrency

2020

The Big Four

Concepts
Modules

Coroutines

Core Language

Three-way comparison operator
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Library

std: :span

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics
Semaphores
Latches and barriers

Cooperative interruption
std::jthread

Coroutine

S

T

Coroutines are generalized functions that can be paused and resumed while
saving their state.

Caller

hS

Function

Ca

ller

Co

/

return

T

routine

/

qwspend

resumeL

/

?suspend

Y

destroy P

=

Characteristics

= Two new concepts
" co awalt expression: suspend and resume expression
" co yield expression:! supports generators

= Typical use cases

= Cooperative Tasks
Event loops

Infinite data streams
» Pipelines

Characteristics

Design Principles (James McNellis)

= Scalable, to billions of concurrent coroutines

= Efficient: Suspend/resume operations comparable in cost to function call
overhead

= Open-Ended: Library designers can develop coroutine libraries
= Seamless Interaction with existing facilities with no overhead.
» Usable in environments where exceptions are forbidden or not available.

o

Characteristics

invoke func (args) func (args)
return return statement co_return statement
suspend co awalt expression

co yileld expression

resume coroutine handle<>::resume ()

A function is a coroutine if it contains a call co return, co await, co yield, or
a range-based for loop co await.

Coroutines: Generators

Generator<int> getNext (int start = 0, int step = 1) {
auto value = start;
while (true) {
co yield value;

value += step;

auto gen = getNext (-10);

for (int i= 1; i <= 20; ++1i) std::cout << gen.next() << " ";

) -10-9-8-7-6-5-4-3-2-1012345678910

infiniteDataStreamWithComments.cpp

e

https://godbolt.org/z/7WE9Ke9nT

e

Coroutines: Generators

C++23 has the first concrete coroutine std: :generator

" std::generator

» Generates a sequence of elements
» Enables nested calls of generators

std: :generator<int> getGenerator () {
std::generator<int> fib () { co yield fib();
co yield O; }
auto a = 0;
auto b = 1;
for(auto n : std::views::iota (0)) {
auto next = a + Db; std::generator<int> getElements () {
a = b; co yield std::ranges::elements of (fib());
b = next; }
co yleld next;
}
} ‘ getGenerator: returns the generator

getElements: returns the next element

T

Coroutines: Waiting Instead of Blocking

Blocking Waiting

Acceptor accept{443}; Acceptor accept{443};

while (true) { while (true) {
Socket so= accept.accept(); // block Socket so= co_await accept.accept();
auto reg= so.read(); // block auto reg= co_await so.read();
auto resp= handleRequest (req) ; auto resp= handleRequest (req) ;

so.write (resp); // block co_await so.write(resp);

e

Framework

C++20 offers a framework for creating concrete coroutines.

auto gen = coroutineFactory():;
gen.next () ;

auto result = gen.getValue();

* The framework consists of three components:
= The promise object
= The coroutine handle
= The coroutine frame

o

Framework

The promise object needs the following member functions.

Member Functions

Default constructor

initial suspend () Determines if the coroutine suspends before it runs.
final suspend/() Determines if the coroutine suspends before it ends.
unhandled exception () Called when an exception happens.

get return object () Returns the coroutine object (resumable object).
return value (val) Isinvoked by co return wval.

return void Is invoked by co return.

yield value (val) Is invoked by co yield wval.

e

Framework

The coroutine handle is a non-owning handle to resume or destroy the
coroutine frame from the outside.

The coroutine frame
= Heap allocated
= Consists of
* Promise object
= Coroutine parameters
» Representation of the suspension point
= Local variables

o

The three promise functions yield value, inital suspend, and
final suspend return Awaiters.

Awaltables and Awaiters

= An Awaiter
» |s something you can await on
= Has to support three functions

Function | Deseription

await ready Indicates if the result is ready. When it returns false,
await suspend is called.

awalt suspend Schedule the coroutine for resumption or destruction.

await resume Provides the result for the co await expr expression.

e

Two Predefined Awaiters

" std::suspend always

struct suspend always {
constexpr bool awalt ready () const noexcept { return false; }
constexpr void awalt suspend(coroutine handle<>) const noexcept {}

constexpr void awalt resume () const noexcept {}

i
" std::suspend never

struct suspend never
constexpr bool awailit ready() const noexcept { return true; }
constexpr void awalt suspend(coroutine handle<>) const noexcept {}

constexpr void awalt resume () const noexcept {}

s

Awalters

= Steps to get the Awaiter

= Lookforthe co await operator inthe promise object

" awalter = awaltable.operator co await();
= Look for a freestanding co await operator
" awalter = operator co await();

= The Awalitable becomes the Awaiter

" gwalter = awaitable;

e

The Promise Workflow

The compiler transforms a coroutine into the following workflow.

Promise prom;
co awalt prom.initial suspend();
try {

<function body having co return, co yield, or co wait>
}
catch (...) {

prom.unhandled exception () ;
}

FinalSuspend:

co awalt prom.final suspend();

lazyFutureWithComments. cpp

https://godbolt.org/z/s6aEdYfz8

o

The Awaliter Workflow

The compiler creates the following workflow based on the Awaitable.

awaitable.await ready() returns false:
suspend coroutine
awaltable.await suspend(coroutineHandle) returns:
void:
bool:
another coroutine handle:

resumptionPoint:
return awaitable.awalt resume () ;

void The coroutine keeps suspended and returns to the caller.
bool == true The coroutine keeps suspended and returns to the caller.
bool == false The coroutine is resumed and does not return to the caller.
anotherCoroutineHandle The other coroutine is resumed and returns to the caller.

startJobWithAutomaticResumptionOnThread.cpp

https://godbolt.org/z/nd6YaKchn

e

Atomics

Atomics are the foundation of C++ memory model

=) Atomic operations on atomics define the synchronization and ordering constraints

» Synchronization and ordering constraints hold for atomics and non-
atomics
»= Synchronization and ordering constraints are used by the high-level
threading interface
= Threads and tasks

= Mutexe and locks
= Condition variables

Atomics

= The atomic flag std::atomic flag

= Has a very simple interface (clear and test and set).
» |s the only data structure guaranteed to be lock free.

std

std:
std:
std:
std:
std:

::atomic
ratomic<T*>
:atomic<Integral type>
:atomic<User-defined type>
:atomic<floating point> (C++20)
:atomic<smart pointers> (C++20)

1
Atomics .

test and set Sets the value and returns the previous value.

clear Clears the value

is lock free Checks if the atomic object is lock-free.

load Returns the value of the atomic.

store Replaces the value of the atomic with the non-atomic.

exchange Replaces the value with the new value. Returns the old value.

compare exchange weak atom.compare exchange strong(expect, desir)

compare exchange strong = |f atomis equal to expect returns true, atom becomes desir.
" |fnotreturns false, expect is updated with atom.

fetch add, += Adds (substrct) the value and returns the preious value.

fetch sub, -=

t+, —- Increments or decrements the atomic.

fetch mult.cpp

https://godbolt.org/z/o788T1c7c

Atomics

* std::atomic flag and std::atomic (C++20)

= Enable synchronization of threads

= atom.notify one () : Notifies one waiting operation
= atom.notify all () : Notifies all waiting operations
" atom.wait (val): Waiting for a notification and blocks as long as atom == wval holds

= The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/xGrjGs814

Atomics

C++11 has std: :shared ptr for shared ownership.

» General rule: use smart pointer

= But:

» The handling of the control block is thread-safe.
= Access to the resource is not thread-safe.

= Solution:

" std::atomic shared ptr

" std::atomic weak ptr

Atomics

3 reasons for an atomic smart pointer.

= Consistency
= std::shared ptr isthe only non-atomic type that supports atomic operations

= Correctness
» The correct use of the atomic operation weighs on the shoulder of the user

‘ Very error-prone

std::atomic store (&sharPtr, localPtr) != sharPtr = localPtr
= Speed
= std::shared ptr is designed for general use

e

Atomics

std::atomic ref (C++20) applies atomic operations to the referenced
object

= Writing and reading of the referenced object is no data race
= The lifetime of the referenced object must exceed the lifetime of std: :atomic ref
= std::atomic ref provides the same interface such as std: :atomic

" std::atomic ref
std::atomic ref<T*>
std::atomic ref<Integral type>
std::atomic ref<User-defined type>
std::atomic ref<floating point>

atomicReference.cpp

https://godbolt.org/z/vjYhMzWsK

e

Semaphores

Semaphores are synchronization mechanisms to control access to a
shared variable.

A semaphore is initialized with a counter greater than O
» Requesting the semaphore decrements the counter
» Releasing the semaphores increments the counter
= Arequesting thread is blocked if the counter is O.

= C++20 support two semaphores.
" std::counting semaphore

" std::bilnary semaphore (std::counting semaphore<l>)

o

Semaphores

Member Function

counting_semaphore: :max () Returns the maximum value of the counter.

sem.release (upd = 1) Increases the counter atomically by upd and unblocks threads
acquiring the semaphore

sem.acquire () Decrements counter by 1 or blocks until counter is greater than 0.

sem.try acquire () Tries to decrement the countexr by 1 if it is greater than 0.

sem.try_ acquire for (relTime) Tries to decrement the counter by 1 or blocks for at most

relTime if counteris0

sem.try acquire until (absTime) Tries to decrement the counter by 1 or blocks at most until
absTime if counterisO.

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/Y6sMEra11
https://godbolt.org/z/YbKET4KdT

o

Condition Variables

= The sender sends a notification.

Vember Function

cv.notify one () Notifies one waiting thread

cv.notify all () Notifies all waiting threads

= The receiver is waiting for the notification while holding the mutex.

Member Function

cv.wait (lock, ...) Waits for the notification
cv.wait for(lock, relTime, ...) Waits for the notification for a time period
cv.wait until (lock, absTime, ...) Waits for the notification until a time point

m) To protect against spurious wakeup and lost wakeup, the wait method should be
used with a predicate.

e

Condition Variables

Thread 1: Sender Thread 2: Recelver

Waits for its notification while holding the lock
= Gets the lock
» Checks and continues to sleep

Does its work
Releases the lock

= Does its work
= Notifies the receiver

// do the work
{

lock guard<mutex> lck(mut);

ready= true;

}

condVar.notify one(); {
\ unique lock<mutex>1lck (mut) ;

condVar.wait (lck, [] {return ready;});
// do the work

conditionVariable.cpp

https://godbolt.org/z/hc389YKP3

Performance Test: Ping-Pong Game

One thread executes a ping function, and the other a pong function.

The ping thread waits for the notification of the pong thread and sends the
notification back to the pong thread.

= The game stops after 1’000°000 ball changes.

Condition Two Atomic One Atomic Atomic Semaphores
Variables Flags Flag Boolean
Execution 0.52 0.32 0.31 0.38 0.33

Time

pingPongConditionVariable.cpp
pingPongAtomicTwoFlags. cpp
pingPongAtomicOneFlag.cpp
pingPongAtomicBool.cpp
pingPongSemaphore. cpp

https://godbolt.org/z/Eebfhz4fh
https://godbolt.org/z/v9KKTb8js
https://godbolt.org/z/7nba79379
https://godbolt.org/z/qdnde34MG
https://godbolt.org/z/6zT6sczvn

o

Latches and Barriers

A thread waits at a synchronization point until the counter
becomes zero.

* latch is useful for managing one task by multiple threads.

lat.count down (upd = 1) Atomically decrements the counter by upd without blocking the caller.
lat.try wait () Returns true if counter ==

lat.wait () Returns immediately if counter == 0. If not blocks until counter == 0.
lat.arrive and wait (upd = 1) Equivalent to count down (upd) ; wait () ;

workers.cpp

https://godbolt.org/z/bc88nP63r

o

Latches and Barriers

*» barrier IS helpful for managing repeated tasks by multiple

threads.
bar.arrive (upd = 1) Atomically decrements counter by upd.
bar.wait () Blocks at the synchronization point until the completion step is done.
bar.arrive and wait () Equivalenttowait (arrive())
bar.arrive and drop () Decrements the counter for the current and the subsequent phase by one.

= The constructor gets a callable.
» In the completion phase, the callable is executed by an arbitrary thread.

fullTimePartTimeWorkers.cpp

https://godbolt.org/z/K34dov53v

o

Cooperative Interruption

Each running entity can be cooperative interrupted.

* std::jthread and std::condition variable any supportan explicit
interface for cooperative interruption.

Receiver (std: :stop token stoken)

stoken.stop possible () Returns true if stoken has an associated stop state.

stoken.stop requested() trueif request stop () was called on the associated
std::stop source src,otherwise false.

o

Cooperative Interruption

Sender (std: :stop source)

src.get token () If stop possible (), returnsa stop token forthe associated stop state.
Otherwise, returns a default-constructed (empty) stop token.

src.stop possible () true if src can be requested to stop.

src.stop requested() trueif stop possible () and request stop () was called by one of
the owners.

src.request stop () Calls a stop request if stop possible () and !stop requested() .

Otherwise, the call has no effect.

interruptdthread. cpp

https://godbolt.org/z/be5s5bnoG

e

Cooperative Interruption

std::stop source and std::stop token are ageneral
mechanism to send a signal.

=) You can send a signal to any running entity.

std::stop source stopSource;

std::stop token stopToken = stopSource.get token();
void function(std::stop token stopToken) {

1f (stopToken.stop requested()) return;

std::thread thr = std::thread(function, stopToken):;

stopSource.request stop()

signalStopRequests.cpp

https://godbolt.org/z/ccn7zxPYj

std: :jJthread

std: :jthread joines automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};
std::cout << "t.joinable(): " << t.joinable();

rainer : bash — Konsole p, v e

File Edit View Bookmarks Settings Help

rainer@seminar:~> jthread

t.joinable(): true

New thread
rainer@seminar:~> |} ¢
[rainer : bash

thread.cpp

Jthread.cpp

https://godbolt.org/z/s89vnqscP
https://godbolt.org/z/jjKdKK6Yo

e

Synchronized Output Streams

Synchronized output streams allow threads to write without
Interleaving on the same output stream.

» Predefined synchronized output streams

std::osyncstream for std::basic osyncstream<char>
std::wosyncstream for std::basic osyncstream<wchar t>

= Synchronized output streams

= Qutput is written to the internal buffer of type std: :basic syncbuf
= When the output stream goes out of scope, it outputs its internal buffer

e

Synchronized Output Streams

= Permanent variable synced out
{

std::osyncstream synced out (std::cout);
synced out << "Hello, ";

synced out << "World!";

synced out << std::endl; // no effect
synced out << "and more!\n";

} // destroys the synced output and emits the internal buffer

= Temporary Variable

std::osyncstream(std::cout) << "Hello, " << "World!\n";

sequencedOutput.cpp

https://godbolt.org/z/Y8qx7Mxvq

o

Blog: www.ModernesCpp.com
Mentoring: www.ModernesCpp.org

Rainer Grimm

Training, Mentoring, and
Technology Consulting

http://www.modernescpp.com/
https://www.modernescpp.org/

	Slide 1
	Slide 2: C++20 - Concurrency
	Slide 3: Coroutines
	Slide 4: Characteristics
	Slide 5: Characteristics
	Slide 6: Characteristics
	Slide 7: Coroutines: Generators
	Slide 8: Coroutines: Generators
	Slide 9: Coroutines: Waiting Instead of Blocking
	Slide 10: Framework
	Slide 11: Framework
	Slide 12: Framework
	Slide 13: Awaitables and Awaiters
	Slide 14: Two Predefined Awaiters
	Slide 15: Awaiters
	Slide 16: The Promise Workflow
	Slide 17: The Awaiter Workflow
	Slide 18: Atomics
	Slide 19: Atomics
	Slide 20: Atomics
	Slide 21: Atomics
	Slide 22: Atomics
	Slide 23: Atomics
	Slide 24: Atomics
	Slide 25: Semaphores
	Slide 26: Semaphores
	Slide 27: Condition Variables
	Slide 28: Condition Variables
	Slide 29: Performance Test: Ping-Pong Game
	Slide 30: Latches and Barriers
	Slide 31: Latches and Barriers
	Slide 32: Cooperative Interruption
	Slide 33: Cooperative Interruption
	Slide 34: Cooperative Interruption
	Slide 35: std::jthread
	Slide 36: Synchronized Output Streams
	Slide 37: Synchronized Output Streams
	Slide 38

