b 21

RAINER GRIMM

&
@ Cppcon %IIJ AN

Back to Basics:
const and constexpr

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

1s constant evaluated

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

const

const correctness: Use the keyword const to
prevent const objects from getting mutated.

m) const IS a quality attribute of your program.

const objects

must be initialized.

cannot be modified.

cannot be victims of data races.

can only invoke const member functions.

o —

const .

const member functions cannot change the object.

struct Immutable {

int val{l2};
void canNotModify () const {
val = 13; // ERROR

}

» Distinguish physical and logical constness of an object.
» Physical constness: The object is const and cannot be changed.
» |Logical constness: The object is const but could be changed.

m) Declare members that can be changed in const member functions
as mutable.

threadSafeCounter.cpp

https://godbolt.org/z/h1bdcqdf1

o —

const

» By default, pass pointers and references to const

volid getCString(const char* cStr);

void getCppString(const std::string& cppStr);

= Semantic:

» Pointer and references do not pass ownership # they borrow the
resource from the caller

= A pointer can be a null pointer # you have to check it

= EXception for non-const pointers and references

void modifyCString(char* cStr);
void modifyCppString(std::string& cppStr);

=) in/out parameter

const

The pointer and the pointee can be const.

" const char* cStr:

" cStr pointsto a char thatis const

» The pointee cannot be modified, but the pointer can.
" char* const cStr:

" cStrisaconst pointer to char

»= The pointer cannot be modified, but the pointee can.
"= const char* const cStr:

" cStr ISa const pointer to a char that is const

= Neither the pointer nor the pointee can be modified.

NP

3,\%/\:' Read the expressions from right to left.

v

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

const cast .

const cast allows it to remove or add the const or
volatile qualifier to a variable.

Modifying a const declared object by removing its
constness Is undefined behavior.

Don'tuse a C-cast (int 1 = (int) myValue;),
because is applies eventually a series of casts:
static cast mEp const cast mmp reinterpret cast

modifyingConst.cpp

constCast.cpp

https://godbolt.org/z/6GWbbK71M
https://godbolt.org/z/5dxK88xdW

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

constexpr

Constant expressions
= can be evaluated at compile time.
= give the compiler deep insight.
= are implicit thread-safe.

= Variables
constexpr double myDouble = 5.2;

const int myInt = 5;

= are implicit const.

= are implicit thread-safe. #A data race requires shared mutable state.

» const variables are implicit constexpr when initialized with a constant
expression.

\\ ! / . .
:(w7>:’ const/constexpr variables make it easy to reason about your concurrent

§' program.

constexpr .

Functions
constexpr int gcd(int a, 1nt b) {
while (b != 0) {
auto t = by
b =a % b;
a = t;

}

return a;

» must resolve each dependency at compile time.
= can have variables that must be initialized by constant expressions.
= cannot have static and thread local variables.

= have the potential to run at compile time. # Must run at compile time whe
used in a constant expression.

= are pure.

o —

constexpr

= Pure Functions (Mathematical functions)

* Produce the same result when given the same arguments
(referential transparency).

= Have no side-effects.
= Don’t change the state of the program.

= Advantages
= Easy to test and to refactor
= The call sequence of functions can be changed
= Automatically parallelizable
= Results can be cached

o —

constexpr

= User-defined types

struct MyDouble ({

double myVal;
constexpr MyDouble (double v): myVal (v) {}

constexpr double getVal () {return myVal;}
i

= must have at least one constexpr constructor.

= can have constexpr and non-constexpr member functions.

" constexpr objects can only invoke constexpr member
functions.

o —

constexpr

C++20 supports the constexpr containers std: :vector
and std: :string.

Memory allocated at compile time must also be released at compile
time. ™ Transient allocation

= The more than 100 algorithms of the STL are declared as
constexpr In C++20.

;\:,,;’_: If possible, declare user-defined types or functions as

$' constexpr.

constexprVector.cpp

https://en.cppreference.com/w/cpp/algorithm
https://godbolt.org/z/eM8rK4Ks3

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

o —

consteval

consteval generates an immediate function.

= Every call of an immediate function generates a constant
expression that is executed at compile time.

consteval

= cannot be applied to destructors.
* has the same requirements as a constexpr function.

consteval int sqgr(int n) {

return n * n;

}
constexpr int r = sqr(100); // OK

int x = 100;
int r2 = sqr(x); // Error

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

o —

constinit

constinit guarantees that a variable with static storage

duration is initialized at compile time. This variable is still
mutable.

= Global objects, or objects declared with static or extern,
have static storage duration.

= Objects with a static storage duration are allocated at the
program start and deallocated at its end.

o —

constinit

Static Initialization Order Fiasco: The initialization order
of static variables between translation units is not specified.

= [nitialization of static happens in two steps.
= Compile time. Statics that are not const-initialized are zero-
initialized.
= Run-time: The zero-initialized statics are dynamic initialized at
run time.

m) constinit solves the static initialization order fiasco.

constinit

// sourceSIOFl.cpp // mainSOIF1l.cpp

int square(int n) { #include <iostream>

return n * n;
} extern int statich;

auto staticA = square(5); auto staticB = statichA;

int main() {

std::cout << "staticB: " << staticB;

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ —-c mainSIOFl.cpp

rainer@seminar:~> g++ —-c sourceSIOFl.cpp

rainer@seminar:~> g++ mainSIOFl.o sourceSI0OFl.o -o mainSource
rainer@seminar:~> g++ sourceSI0OFl.o mainSIOFl.o -o sourceMain
rainer@seminar:~> mainSource

staticB: @
rainer@seminar:~> sourceMain
staticB: 25

rainer@seminar:~> I |

constinit

// sourceSIOF3.cpp // mainSOIF3.cpp

constexpr int quad(int n) { #include <iostream>

return n * n;
} extern constinit int staticA;
auto staticB = staticA;
constinit auto staticA = quad(b);
int main () {

std::cout << "staticB: " << staticB;

B Windows PowerShell - o X

C:\Users\rainer>clang++ -std=c++20 -c mainSIOF3.cpp

C:\Users\rainer>clang++ -std=c++20 -c¢ sourceSIOF3.cpp

C:\Users\rainer>clang++ mainSIOF3.0 sourceSIOF3.o0 -o mainSource.exe
C:\Users\rainer>clang++ sourceSIOF3.o0 mainSIOF3.0 -0 sourceMain.exe
C:\Users\rainer>mainSource.exe

staticB: 25

C:\Users\rainer>sourceMain.exe

staticB: 25

C:\Users\rainer>

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

is constant evaluated

std::1s constant evaluated

std::is constant evaluated determines whether the
function is executed at compile time or run time.

constexpr double power (double b, int x) {
if (std::is constant evaluated() && !(b == 0.0 && x < 0)) {
if (x == 0) return 1.0;

double r = 1.0, p=x > 0?2 Db : 1.0 / b;

auto u = unsigned(x > 0 ? x : -x);
while (u !'= 0) {

if (u & 1) r *= p;

u /= 2;

p *= p;

return r;
}
else return std::pow (b, double(x));
} // https://en.cppreference.com/w/cpp/types/is constant evaluated

// not declared constexpr

https://en.cppreference.com/w/cpp/types/is_constant_evaluated

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —]

constexpr

consteval

constinit

1s constant evaluated

Function Execution

#include <iostream>
int sgrRunTime (int n) { return n * n; }
consteval int sgrCompileTime(int n) { return n * n; }

constexpr int sgrRunOrCompileTime (int n) { return n * n; }

int main() {

constexpr int prodl = sgrRunTime (100) ; // ERROR
constexpr int prodZ2 = sqrCompileTime (100);
constexpr int prod3 = sqrRunOrCompileTime (100) ;

int x = 100;

int prod4 = sgrRunTime (x) ;
int prod5 = sgrCompileTime (x) ; // ERROR
int prod6 = sgrRunOrCompileTime (x) ;

consteval.cpp

https://godbolt.org/z/jv716he69

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —]

constexpr

consteval

constinit

1s constant evaluated

o —

Variable Initialization

#include <iostream>

constexpr int constexprVal = 1000;
constinit int constinitVal = 1000;
int main () {

auto val = 1000;

const auto res = ++val;

std::cout << "res: " << ++res << '\n'; // ERROR
std::cout << "++4+constexprVal: " << ++4+constexprVal << '\n’; // ERROR
std: :cout << "++4+constinitVal: " << +4++4+constinitVal << '\n';

1000;
constinit auto localConstinit = 1000; // ERROR

constexpr auto localConstexpr

constexprConstinit.cpp

https://godbolt.org/z/1Y55Gvab1

o —

Variable Initialization

W\

—i@; Initialization of a local non-cost variable at compile time.

7’

consteval auto doubleMe (auto val) {

return 2 * val;

int main() {
auto res = doubleMe (1010); // compile-time initialization
++res; // 2021 // non-const

compileTimeInitializationLocal.cpp

https://godbolt.org/z/xeMn3WTbW

o —

Many Flavors of Constness

Flavors Differences

Function
Execution

const —

Variable
Initialization

const cast —

constexpr

consteval

constinit

1s constant evaluated

"Rainer Grimm

Training, Coaching, and
. Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

