
The C++

Memory Model

Rainer Grimm

Training, Coaching and Technology Consulting

www.grimm-jaud.de

Multithreading with C++

C++'s answers to the requirements of the multicore

architectures.

A well defined memory model

• Atomic Operations

• Partial ordering of operations

• Visible effects of operations

A standardized threading interface

• Threads and tasks

• Protection and safe initialization of shared data

• Thread local data

• Synchronization of threads

Expert Levels

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

The Contract

 Developer follow the rules

 Atomic operations

 Partial ordering of operations

 Visible effects of operations

 System wants to optimize

 Compiler

 Processor

 Memory system

Highly optimized program.
Tailored for the architecture.

The Contract

 More optimization possibilities

for the system

 Number of potential

interleaving's grows

exponentially

 More and more the domain of

experts

 Break of the intuition

 Area of micro optimization

The Contract

 Sequential consistency

 Strong memory model

 Universal clock

Break of the sequential consistency

 Acquire-release semantic

 Synchronization of atomics

(between threads)

 Relaxed semantic

 Weak Memory Model

 Weak guarantees

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

Atomics

Atomics are the foundation of C++ memory model.

Atomic operations on atomics define the synchronization and

ordering constraints.

• Synchronization and ordering constraints holds for

atomics and non-atomics.

• Synchronization and ordering constraints are used by the

high level threading interface.

• Threads and tasks

• Mutexe and locks

• Condition variables

• ...

Atomics: std::atomic_flag

The atomic flag std::atomic_flag

• has a very simple interface

• clear and test_and_set

• is the only lock-free data structure.

All other atomics for integral types, pointer, and user defined atomics

can internally use a lock.

• is the building block for higher abstractions.

Spinlock

Atomics: std::atomic_flag

class Spinlock{

std::atomic_flag flag;

public:

Spinlock():flag(ATOMIC_FLAG_INIT){}

void lock(){

while(flag.test_and_set());

}

void unlock(){

flag.clear();

}

};

Spinlock spin;

// Mutex spin;

void workOnResource(){

spin.lock();

sleep_for(seconds(2));

spin.unlock();

}

int main({

thread t(workOnResource);

thread t2(workOnResource);

t.join();

t2.join();

}

Spinlock

Atomics: std::atomic_flag

Spinlock Mutex

Atomics: std::atomic<bool>

The atomic Boolean std::atomic<bool>

• can explicitly set to true or false.

• supports the function compare_exchange_strong.

• Fundamental function for atomic operations.

• Compares and sets a value in a atomic operation.

• Syntax: bool compare_exchange_strong(exp, des)

• Strategy: atom.compare_exchange_strong(exp, des)

*atom == exp *atom= des; returns true

*atom != exp exp= *atom; returns false

• can be used for implementing a condition variable.

Atomics: Condition Variable

std::vector<int> mySharedWork;

std::mutex mutex_;

std::condition_variable condVar;

bool dataReady;

void setDataReady(){

mySharedWork={1 ,0, 3};

{

lock_guard<mutex> lck(mutex_);

dataReady=true;

}

condVar.notify_one();

}

void waitingForWork(){

unique_lock<mutex> lck(mutex_);

condVar.wait(lck, []{ return dataReady; });

mySharedWork[1]= 2;

}

int main(){

thread t1(waitingForWork);

thread t2(setDataReady);

t1.join();

t2.join();

for (auto v: mySharedWork){

std::cout << v << " ";

} // 1 2 3

}

Atomics: std::atomic<bool>

std::vector<int> mySharedWork;

std::atomic<bool> dataReady(false);

void setDataReady(){

mySharedWork={1,0,3};

dataReady= true;

}

void waitingForWork(){

while (!dataReady.load()){

sleep_for(milliseconds(5));

}

mySharedWork[1]= 2;

}

int main(){

thread t1(waitingForWork);

thread t2(setDataReady);

t1.join();

t2.join();

for (auto v: mySharedWork){

cout << v << " ";

}

} // 1 2 3

sequenced-before

synchronizes-with

Atomics: std::atomic

All further atomics are partially or fully specializations of

std::atomic.

std::atomic<T*>

std::atomic<Integral type>

std::atomic<User-defined type>

• There are restrictions on user-defined types

• Its copy-assignment operator and that of the base classes must

be trivial.

• They can not have virtual methods or virtual base classes.

• They must be bitwise comparable.

Atomics: std::atomic

There is no multiplication or division.!

Atomics: std::atomic

template <typename T>

T fetch_mult(std::atomic<T>& shared, T mult){

T oldValue= shared.load();

while (!shared.compare_exchange_strong(oldValue, oldValue * mult));

return oldValue;

}

int main(){

std::atomic<int> myInt{5};

std::cout << myInt << std::endl;

fetch_mult(myInt,5);

std::cout << myInt << std::endl;

}

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

Synchronization and Ordering

C++ has six different memory models.
enum memory_order {

memory_order_relaxed,

memory_order_consume,

memory_order_acquire,

memory_order_release,

memory_order_acq_rel,

memory_order_seq_cst

};

• Sequential consistency is the default.

• The memory model for C# and Java.

• memory_order_seq_cst

• Implicit argument for atomic operations.
std::atomic<int> shared;

shared.load() shared.load(std::memory_order_seq_cst);

Synchronization and Ordering

To get a systematic in the memory model you have to

answer two questions.

1. For which kind of operations should you use which memory

model?

2. Which synchronization and ordering constraints are defined by

the various memory models?

Synchronization and Ordering

1. For which kind of operations should you use which

memory model?

• read operations:

memory_order_acquire and memory_order_consume

• write operations:

memory_order_release

• read-modify-write operations:

memory_order_acq_rel and memory_order_seq_cst

memory_order_relaxed doesn't define synchronization and

ordering constraints.!

Synchronization and Ordering

Synchronization and Ordering

2. Which synchronization and ordering constraints are

defined by the various memory models?

• Sequential consistency

• Global ordering of all threads

memory_order_seq_cst

• Acquire-release semantic

• Ordering between read and write operations on the same atomic

memory_order_consume, memory_order_acquire,

memory_order_release, and memory_order_acq_rel

• Relaxed semantic

• No synchronizations and ordering constraints

memory_order_relaxed

Synchronization and ordering

Sequential consistency(Leslie Lamport 1979)

1. The operations of a program will be executed in source code

order.

2. There is a global order of all operations on all threads.

Sequential consistency causes

1. The statements are executed in

the source code order.

2. Each thread sees operations of

each other thread in the same

order (unique clock).

Synchronization and Ordering

Possible
interleaving's

Synchronization and Ordering

Acquire-release semantic

• A release-operation on a atomic synchronizes with a acquire-

operation on the same atomic and establishes in addition an

ordering constraint.

• Acquire-operation:

• Read-operation (load or test_and_set)

• Release-operation:

• Write-operation (store or clear)

• Ordering constraints:

• Read- and write-operations can not be moved before an acquire-

operation.

• Read- and write-operations can not be moved after a release-

operation.

Synchronization and Ordering

Thread 1

Thread 2

Thread 3

Synchronization and Ordering

 Acquire-operations

 Locking of a mutex

 Waiting for a condition

variable

 Starting of a thread

 Release-operations

 Unlocking of a mutex

 Notification of a condition

variable

 join-call on a thread

Synchronization and Ordering

class Spinlock{

std::atomic_flag flag;

public:

Spinlock(): flag(ATOMIC_FLAG_INIT){}

void lock(){

while(flag.test_and_set(memory_order_acquire));

}

void unlock(){

flag.clear(std::memory_order_release);

}

};

Synchronization and Ordering

Consume-release semantic

• Consume-release semantic is the acquire-release semantic

without ordering constraints.

• Has a legendary reputation

• Extremely difficult to get

• The compiler maps std::memory_order_consume to

std::memory_order_acquire.

• No compiler implements it (Temporary exception GCC)

• Deals with data dependencies

• In a thread: carries-a-dependency-to

• Between threads: dependency-ordered-before

Synchronization and Ordering

atomic<string*> ptr;

int data;

atomic<int> atoData;

void producer(){

string* p = new string("C++11");

data = 2011;

atoData.store(14,memory_order_relaxed);

ptr.store(p,memory_order_release);

}

void consumer(){

string* p2;

while (!(p2 = ptr.load(memory_order_acquire)));

cout << *p2 << " " << data;

cout << atoData.load(memory_order_relaxed);

}

atomic<string*> ptr,

int data;

atomic<int> atoData;

void producer(){

string* p = new string("C++11");

data = 2011;

atoData.store(14,memory_order_relaxed);

ptr.store(p, memory_order_release);

}

void consumer(){

string* p2;

while (!(p2 = ptr.load(memory_order_consume)));

cout << *p2 << " " << data;

cout << atoData.load(memory_order_relaxed);

}

Synchronization and Ordering

Synchronization and Ordering

Last words from cppreference.com

The specification of release-consume

ordering is being revised, and the use of

memory_order_consume is temporarily

discouraged. (since C++17)

http://en.cppreference.com/w/cpp/atomic/memory_order

Synchronization and Ordering

Relaxed semantic

• There are no synchronization and ordering constraints. The

operations are only atomic.

• Rule

• Atomic operations with stronger memory orderings are used to

order atomic operations with relaxed semantic.

• Typical use case Atomic counter (shared_ptr)

Threads can see the operations in another thread in a different

order. !

Synchronization and Ordering

std::atomic<int> cnt = {0};

void f(){

for (int n = 0; n < 1000; ++n) {

cnt.fetch_add(1, std::memory_order_relaxed);

}

}

int main(){

std::vector<std::thread> v;

for (int n = 0; n < 10; ++n){

v.emplace_back(f);

}

for (auto& t : v) {

t.join();

}

std::cout << "Final counter value is " << cnt << '\n';

}

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

mutex myMutex;

class MySingleton{

public:

static MySingleton& getInstance(){

lock_guard<mutex> myLock(myMutex);

if(!instance) instance= new MySingleton();

return *instance;

}

private:

MySingleton();

~MySingleton();

MySingleton(const MySingleton&)= delete;

MySingleton& operator=(const MySingleton&)= delete;

static MySingleton* instance;

};

MySingleton::MySingleton()= default;

MySingleton::~MySingleton()= default;

MySingleton* MySingleton::instance= nullptr;

...

MySingleton::getInstance();

Singleton

Performance problem

Sequential Consistency

class MySingleton{

public:

static MySingleton* getInstance(){

MySingleton* sin= instance.load();

if (!sin){

std::lock_guard<std::mutex> myLock(myMutex);

sin= instance.load(std::memory_order_relaxed);

if(!sin){

sin= new MySingleton();

instance.store(sin);

}

}

return sin;

}

private:

static std::atomic<MySingleton*> instance;

static std::mutex myMutex;

. . .

Acquire-Release Semantic

class MySingleton{

public:

static MySingleton* getInstance(){

MySingleton* sin= instance.load(std::memory_order_acquire);

if (!sin){

std::lock_guard<std::mutex> myLock(myMutex);

sin= instance.load(std::memory_order_relaxed);

if(!sin){

sin= new MySingleton();

instance.store(sin,std::memory_order_release);

}

}

return sin;

}

. . .

Meyers Singleton

class MySingleton{

public:

static MySingleton& getInstance(){

static MySingleton instance;

return instance;

}

private:

MySingleton()= default;

~MySingleton()= default;

MySingleton(const MySingleton&)= delete;

MySingleton& operator=(const MySingleton&)= delete;

};

Will only work with Microsoft Visual Studio 2015.!

Singleton: The Performance Test

Compiler Optimization Single
Threaded

std::lock_guard
(Mutex)

Sequential
consistency

Acquire-release
semantic

Meyers
Singleton

GCC yes 0.03 12.47 0.09 0.07 0.04

cl.exe yes 0.02 15.48 0.07 0.07 0.03

You can find std::call_once and the rest of the details here:

Thread safe initialization of a singleton.

http://www.modernescpp.com/index.php/thread-safe-initialization-of-a-singleton

Singleton: The Performance Test

 My conclusions

 Singleton awakes many

emotions.

 The optimizer removes the calls

of MySingleton::getInstance().

 Meyers singleton is the simplest

and the fastest implementation.

By Watchduck (a.k.a. Tilman Piesk) - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=10876384

The C++ Memory Model

The Contract

Atomics

Synchronization and Ordering Constraints

Singleton Pattern

Further Information

• Modernes C++: Training, coaching, and

technology consulting by Rainer Grimm

• www.ModernesCpp.de

• Blog to modern C++

• www.grimm-jaud.de (German)

• www.ModernesCpp.com (English)

• Contact

• @rainer_grimm (Twitter)

• schulungen@grimm-jaud.de

http://www.modernescpp.de/
http://www.grimm-jaud.de/
http://www.modernescpp.com/
https://twitter.com/rainer_grimm/status/699717467770392576
mailto:schulungen@grimm-jaud.de

