
The C++ Core

Guidelines for

Safer Code

Rainer Grimm

Training, Coaching and,

Technology Consulting

www.ModernesCpp.de

http://www.modernescpp.de/

Guidelines

Best Practices for the Usage of C++

 Why do we need guidelines?

 C++ is a complex language in a complex domain.

 A new C++ standard is published all three years.

 C++ is used in safety-critical systems.

 Reflect your coding habits.

Most Prominent Guidelines

 MISRA C++

 Motor Industry Software Reliability Association

 Based on MISRA C

 Industry standard in automotive, avionic, and medicine domain

 Published 2008 C++03

 AUTOSAR C++14

 Based on C++14

 More and more used in automotive domain (BMW)

 C++ Core Guidelines

 Community driven

https://www.autosar.org/fileadmin/files/standards/adaptive/17-03/general/specs/AUTOSAR_RS_CPP14Guidelines.pdf
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Overview

 Philosophy

 Interfaces

 Functions

 Classes and class hierarchies

 Enumerations

 Resource management

 Expressions and statements

 Error handling

 Constants and immutability

 Templates and generic programming

 Concurrency

 The standard library

 Guideline support library

Syntactic Form

 About 350 rules and a few hundred pages

 Each rule follows a similar structure

 The rule itself

 A rule reference number

 Reason(s)

 Example(s)

 Alternative(s)

 Exception(s)

 Enforcement

 See also(s)

 Note(s)

 Discussion

Guidelines Support Library (GSL)

A small library for supporting the guidelines of the C++ core

guidelines.

 Implementations are available for

 Windows, Clang, and GCC

 GSL-lite works with C++98, and C++03

 Components

 Views

 Owner

 Assertions

 Utilities

 Concepts

https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite

Interfaces

I.11: Never transfer ownership by a raw pointer (T*)

 func(value)

 func has an independent copy of value and the runtime is the owner

 func(pointer*)

 pointer is borrowed but can be zero

 func is not the owner and must not delete the pointer

 func(reference&)

 reference is borrowed but can’t be zero

 func is not the owner and must not delete the reference

 func(std::unique_ptr)

 std::unique_ptr is the owner of the pointer

 func(std::shared_ptr)

 std::shared_ptr is an additional owner of the pointer

 std::shared_ptr extends the lifetime of the pointer

Interfaces

I.13: Do not pass an array as a single pointer

 What if n is wrong?

 Use span from the GSL

Functions

F.43: Never (directly or indirectly) return a pointer or a

reference to a local object

Classes

C.2: Use class if the class has an invariant; use struct if

the data members can vary independently

 The data members can vary independently

 The data members has an invariant

Classes

C.20: If you can avoid defining any default operations, do

C.21: If you define or =delete any default operation,

define or =delete them all

Sticky Bits - Becoming a Rule of Zero Hero

https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/

Enum

Enum.3: Prefer enum classes over “plain” enums

 Can only be accessed in the scope of the enumeration.

 Don't implicitly convert to int.

 Don't pollute the global namespace.

 The default type is int, but you can adjust it.

Resource Management

R.1: Manage resources automatically using resource

handles and RAII (Resource Acquisition Is Initialization)

 RAII-Idiom (Resource Acquisition Is Initialization)

 The lifetime of a resource is bound to an automatic object.

 The resource will be initialized in the constructor of the object;

released in the destructor of the object.

 Used

 Containers of the Standard Template Library and std::string

 Smart pointers

 Locks

 std::jthread (C++20)

Resource Management

Expressions and Statements

ES.28: Use lambdas for complex initialization,

especially of const variables

 but widget x should be const

Expressions and Statements

ES.100: Don’t mix signed and unsigned arithmetic

 mixed arithmetic with GCC, Clang, and MSVC

Concurrency and Parallelism

CP.8: Don’t try to use volatile for synchronization

 std::atomic

 Atomic (thread-safe) access to shared state.

 volatile

 Access to special memory, for which read and write optimisations

are not allowed.

Java volatile C++ atomic == C++ volatile !=

Concurrency and Parallelism

CP.9: Whenever feasible use tools to validate your

concurrent code

Thread Sanitizer detects data races at runtime.

g++ threadArguments.cpp -fsanitize=thread -g –o threadArguments

 skip

Concurrency and Parallelism

Error Handling

E.7: State your preconditions

E.8: State your postconditions

 Precondition: should hold upon entry in a function.

 Postcondition: should hold upon exit from the function

 Assertion: should hold at its point in the computation.

Constants and Immutability

Con.2: By default, make member functions const

 The method read should be const!

Constants and Immutability

 Physical constness:

 The object is const and can not be changed.

 Logical constness:

 The object is const but could be changed.

Templates and Generic Programming

 Usage

 Definition

T.10: Specify concepts for all template arguments

 Concepts are a compile-time predicate.

Templates and Generic Programming

 Core language concepts

 Same

 DerivedFrom

 ConvertibleTo

 Common

 Integral

 Signed Integral

 Unsigned Integral

 Assignable

 Swappable

 Comparison concepts

 Boolean

 EqualityComparable

 StrictTotallyOrdered

 Object concepts

 Destructible

 Constructible

 DefaultConstructible

 MoveConstructible

 Copy Constructible

 Movable

 Copyable

 Semiregular

 Regular

 Callable concepts

 Callable

 RegularCallable

 Predicate

 Relation

 StrictWeakOrder

Templates and Generic Programming

