
The C++ Core

Guidelines for

Safer Code

Rainer Grimm

Training, Coaching and,

Technology Consulting

www.ModernesCpp.de

http://www.modernescpp.de/

Guidelines

Best Practices for the Usage of C++

 Why do we need guidelines?

 C++ is a complex language in a complex domain.

 A new C++ standard is published all three years.

 C++ is used in safety-critical systems.

 Reflect your coding habits.

Most Prominent Guidelines

 MISRA C++

 Motor Industry Software Reliability Association

 Based on MISRA C

 Industry standard in automotive, avionic, and medicine domain

 Published 2008 C++03

 AUTOSAR C++14

 Based on C++14

 More and more used in automotive domain (BMW)

 C++ Core Guidelines

 Community driven

https://www.autosar.org/fileadmin/files/standards/adaptive/17-03/general/specs/AUTOSAR_RS_CPP14Guidelines.pdf
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Overview

 Philosophy

 Interfaces

 Functions

 Classes and class hierarchies

 Enumerations

 Resource management

 Expressions and statements

 Error handling

 Constants and immutability

 Templates and generic programming

 Concurrency

 The standard library

 Guideline support library

Syntactic Form

 About 350 rules and a few hundred pages

 Each rule follows a similar structure

 The rule itself

 A rule reference number

 Reason(s)

 Example(s)

 Alternative(s)

 Exception(s)

 Enforcement

 See also(s)

 Note(s)

 Discussion

Guidelines Support Library (GSL)

A small library for supporting the guidelines of the C++ core

guidelines.

 Implementations are available for

 Windows, Clang, and GCC

 GSL-lite works with C++98, and C++03

 Components

 Views

 Owner

 Assertions

 Utilities

 Concepts

https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite

Interfaces

I.11: Never transfer ownership by a raw pointer (T*)

 func(value)

 func has an independent copy of value and the runtime is the owner

 func(pointer*)

 pointer is borrowed but can be zero

 func is not the owner and must not delete the pointer

 func(reference&)

 reference is borrowed but can’t be zero

 func is not the owner and must not delete the reference

 func(std::unique_ptr)

 std::unique_ptr is the owner of the pointer

 func(std::shared_ptr)

 std::shared_ptr is an additional owner of the pointer

 std::shared_ptr extends the lifetime of the pointer

Interfaces

I.13: Do not pass an array as a single pointer

 What if n is wrong?

 Use span from the GSL

Functions

F.43: Never (directly or indirectly) return a pointer or a

reference to a local object

Classes

C.2: Use class if the class has an invariant; use struct if

the data members can vary independently

 The data members can vary independently

 The data members has an invariant

Classes

C.20: If you can avoid defining any default operations, do

C.21: If you define or =delete any default operation,

define or =delete them all

Sticky Bits - Becoming a Rule of Zero Hero

https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/

Enum

Enum.3: Prefer enum classes over “plain” enums

 Can only be accessed in the scope of the enumeration.

 Don't implicitly convert to int.

 Don't pollute the global namespace.

 The default type is int, but you can adjust it.

Resource Management

R.1: Manage resources automatically using resource

handles and RAII (Resource Acquisition Is Initialization)

 RAII-Idiom (Resource Acquisition Is Initialization)

 The lifetime of a resource is bound to an automatic object.

 The resource will be initialized in the constructor of the object;

released in the destructor of the object.

 Used

 Containers of the Standard Template Library and std::string

 Smart pointers

 Locks

 std::jthread (C++20)

Resource Management

Expressions and Statements

ES.28: Use lambdas for complex initialization,

especially of const variables

 but widget x should be const

Expressions and Statements

ES.100: Don’t mix signed and unsigned arithmetic

 mixed arithmetic with GCC, Clang, and MSVC

Concurrency and Parallelism

CP.8: Don’t try to use volatile for synchronization

 std::atomic

 Atomic (thread-safe) access to shared state.

 volatile

 Access to special memory, for which read and write optimisations

are not allowed.

Java volatile C++ atomic == C++ volatile !=

Concurrency and Parallelism

CP.9: Whenever feasible use tools to validate your

concurrent code

Thread Sanitizer detects data races at runtime.

g++ threadArguments.cpp -fsanitize=thread -g –o threadArguments

 skip

Concurrency and Parallelism

Error Handling

E.7: State your preconditions

E.8: State your postconditions

 Precondition: should hold upon entry in a function.

 Postcondition: should hold upon exit from the function

 Assertion: should hold at its point in the computation.

Constants and Immutability

Con.2: By default, make member functions const

 The method read should be const!

Constants and Immutability

 Physical constness:

 The object is const and can not be changed.

 Logical constness:

 The object is const but could be changed.

Templates and Generic Programming

 Usage

 Definition

T.10: Specify concepts for all template arguments

 Concepts are a compile-time predicate.

Templates and Generic Programming

 Core language concepts

 Same

 DerivedFrom

 ConvertibleTo

 Common

 Integral

 Signed Integral

 Unsigned Integral

 Assignable

 Swappable

 Comparison concepts

 Boolean

 EqualityComparable

 StrictTotallyOrdered

 Object concepts

 Destructible

 Constructible

 DefaultConstructible

 MoveConstructible

 Copy Constructible

 Movable

 Copyable

 Semiregular

 Regular

 Callable concepts

 Callable

 RegularCallable

 Predicate

 Relation

 StrictWeakOrder

Templates and Generic Programming

