The C++ Core

Ve "T.-
i otals
) el INEeS fo r
0'. ‘ ¢ T4 > * ‘
| 1 Je * . i
1] 1 ¢ 1724, 1 -
FCL
it } 2
¢ $ "Rainer Grimm
. 1 Y % -“-_". .
2.began (e . Training, Coaching and,
' . Technology Consulting
5 * - -

http://www.modernescpp.de/

Guidelines

Best Practices for the Usage of C++

= Why do we need guidelines?
= C++1s a complex language in a complex domain.
= Anew C++ standard is published all three years.
= C++Is used in safety-critical systems.

m) Reflect your coding habits.

———

o —

Most Prominent Guidelines

= MISRA C++
= Motor Industry Software Reliability Association
= Based on MISRA C
» |ndustry standard in automotive, avionic, and medicine domain
* Published 2008 ®# C++03

= AUTOSAR C++14
» Based on C++14
= More and more used in automotive domain (BMW)

= C++ Core Guidelines
= Community driven

———

https://www.autosar.org/fileadmin/files/standards/adaptive/17-03/general/specs/AUTOSAR_RS_CPP14Guidelines.pdf
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

o —

Overview

Philosophy

* Interfaces

* Functions

» (Classes and class hierarchies
= Enumerations

= Resource management

= EXxpressions and statements

= Error handling

= Constants and immutability

» Templates and generic programming
= Concurrency

» The standard library

» Guideline support library

———

o —

Syntactic Form

= About 350 rules and a few hundred pages

= Each rule follows a similar structure
= The rule itself
= Arule reference number
= Reason(s)
= Example(s)
= Alternative(s)
= Exception(s)
= Enforcement
= See also(s)
= Note(s)
= Discussion

———

o —

Guidelines Support Library (GSL)

A small library for supporting the guidelines of the C++ core
guidelines.

* |mplementations are available for
* Windows, Clang, and GCC
» GSL-lite works with C++98, and C++03

= Components
= Views
= Owner
= Assertions
= Utilities
= Concepts

———

https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite

o —

Interfaces

|.11: Never transfer ownership by a raw pointer (T*)

= func(value)

» func has an independent copy of value and the runtime is the owner
= func (poilnter*)

" pointer IS borrowed but can be zero

= func IS not the owner and must not delete the pointer
= func(reference&)

» reference is borrowed but can’t be zero

= func IS not the owner and must not delete the reference
" func(std::unique ptr)

* std::unique ptr is the owner of the pointer
" func(std::shared ptr)

= std::shared ptr is an additional owner of the pointer

- = std::shared ptr extends the lifetime of the pointer

o —

Interfaces

1.13: Do not pass an array as a single pointer

= What if n is wrong?

void copy(const int* p, +int* q, int n)§ // copy from [p:p+n] to [qi:q+n]
void draw(double* p, int n); // poor interface; poor code

= Use span from the GSL

void copy(span<const {int> r, span<int> r2); // copy r to r2
void draw(span<int> p);

int a[10e@]}
int b[1ee];

copy(a, b);
std::vector<int> vec}

&;;H{HEE];

———

o —

Functions

F.43: Never (directly or indirectly) return a pointer or a
reference to a local object

int* f£()

1
int fx = 5;
.-""; -“I

return &fx; // BAD

}

ints f£()
{

int x = 7;
.-'J; -"'I

return x; // BAD

o —

Classes

C.2: Use class if the class has an invariant; use struct if
the data members can vary independently

* The data members can vary independently

struct Pair |{
string name;
int volume;

| 3=

= The data members has an invariant

class Date |
/S wvalidate that {vy, mm, dd} is a valid date and initialize

Date{(int yy, Month mm, char dd);

int y;
Month m;

char d; S/ day
IIIIIIIIIIII }i

o —

Classes

C.20: If you can avoid defining any default operations, do

C.21: If you define or =delete any default operation,
define or =delete them all

If you write...
m None dtor Copy-ctor | Copy-op= | Move-ctor | Move-op=
)
g dtor v ¢ v v v v
=)
2 Copy-ctor \/ \/ ¢ \/ X X
)
CEL Copy-op= v v v ¢ X X
@)
O Move-ctor \/ X ‘ ’ X
) Overload resolution
- will result in copyin
F— Move-op= \/ X PYing X +

Copy operations
are independent...

Move operations

are not.

- Sticky Bits - Becoming a Rule of Zero Hero

https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/
https://blog.feabhas.com/2015/11/becoming-a-rule-of-zero-hero/

o —

Enum

Enum.3: Prefer enum classes over “plain” enums

enum struct ColorZ: char{

red= 126,
blue, // 127
green // 128 => ERRCE

};

!

main.cpp:4:3: error: enumerator value '128' is outside the range of underlying type '‘char’
green // 128 => ERROR

= Don't implicitly convertto int.

= Don't pollute the global namespace.
» The defaulttype is int, butyou can adjust it.

———

o —

Resource Management

R.1: Manage resources automatically using resource
handles and RAIlI (Resource Acquisition Is Initialization)

= RAII-Idiom (Resource Acquisition Is Initialization)
= The lifetime of a resource is bound to an automatic object.

= The resource will be initialized in the constructor of the object;
released in the destructor of the object.

= Used

= Containers of the Standard Template Library and std: : string
= Smart pointers

= Locks

* std::jthread (C++20)

———

Resource Management

class ResourceGuard]
const std::string resource;

ResourceGuard (const std::string& res) :rescource(res) {

std: :cout << "Acguire the " << resource << "." << std::endl;
}
~ResourceGuard () {

std: :cout << "Release the "<< resource << "." << std::endl;

}i
int main() {

ResourceGuard resGuardl{"memoryBlockl"};
ResourceGuard resGuard?Z{"memoryBlockZ"};

tryi
ResourceGuard resGuard3{"memoryBlock3i"};
throw std::bad alloc();

}

catch (std::bad allocs e){
std: :cout << e.what () ;

o —

Expressions and Statements

ES.28: Use lambdas for complex initialization,
especially of const variables

widget x; // should be const, but:

for (auto 1 = 2; 1 <= N; ++1) { // this could be some
X += some_obj.do something with(i); // arbitrarily long code
} // needed to initialize x

// from here, x should be const, but we can't say so in code in this style

=) but widget x should be const

const widget x = [&]{

widget val; // widget has a default constructor

for (auto 1 = 2; 1 <= N; ++1i) { // this could be some
val += some obj.do something with(i); // arbitrarily long code
¥ // needed to initialize x
return val;
1O

———

#include <iostream>

int main () {

int x = -3;

int v = 7;

std:
std:
std:
std:

}

rcout << x - y <<
cout << X + y <<
cout << x * y <<
tcout << x / y <<

std:
std:
std:
std:

rendl;
rendl;
:endl;
rendl;

Expressions and Statements

s T Y |

o —

ES.100: Don’t mix sighed and unsigned arithmetic

=) mixed arithmetic with GCC, Clang, and MSVC

#include <iostream>

int main(){

int x = -3,
unsigned int y = 7;

std:

std

B

icout << x - y <<

ricout << X + y <<
std:
std:

tcout << x * y <«
tcout << x [/ y <«

std:
std:
std:
std:

tendl;
rendl;
rendl;
rendl;

// 4294967286
/4

// 4294967275
// 613566756

Concurrency and Parallelism

CP.8: Don’t try to use volatile for synchronization

" std::atomic
= Atomic (thread-safe) access to shared state.

" yolatile

= Access to special memory, for which read and write optimisations
are not allowed.

Java volatile == C++ atomic = €+* volatile

———

o —

Concurrency and Parallelism

CP.9: Whenever feasible use tools to validate your
concurrent code

Thread Sanitizer detects data races at runtime.

gt++ threadArguments.cpp -fsanitize=thread -g —-o threadArguments

rainer ; bash — Konsole <3>

File Edit View Bookmarks Settings Help
rainer@seminar:~> threadArguments -

valSleeper = 1000

WARNING: ThreadSanitizer: data race (pid=3418)
Write of size 4 at Ox7fff17d75948 by thread T1:
#0 Sleeper::operator()(int) /home/ralner/threadArguments cpp:11 (threadArguments+0x000000401d53)

H#1 wunid ct+d:+» Rind cimnlarsClaoaanar lintYss M dnuabacsnulslcetd-+ Tndav +iunlacsAnls) Juecvrfincludalri i IR IFunect

skip
#2 main /home/rainer/threadArguments.cpp:25 (threadArguments+0x000000401659)

SUMMARY: ThreadSanitizer: data race /home/rainer/threadArguments.cpp:11 in Sleeper::operator()(int)

ThreadSanitizer: reported 1 warnings |
140536688146176rainer@seminar:~> |
a rainer : bash

Concurrency and Parallelism

CppMem: Interactive C/C++ memory model

Model

st‘d]‘.d) preferred release_acquire ' tot relaxed_only
Program

examples/Paper | sc_atomics.c A

® C Execution

// contrasting with data race.c, this
// shows a concurrent use of sc_atomic that does
// not have a data race

int main() {
atomic_int x = 2;
int ¥ = 07
{{{ x.stoxre(3);
Il v = ((x.load())==3);
i
return 0; }

(2)

run | reset |help 8 executions; 2 consistent, all race free

Comgut ecutions
rmi Display Relations
as

Msb [dd Ced

Mrf Mmo Msc Mo

[Jhb Clvse Uithb Msw [lrs [lhrs Mdob [lcad
Munsequenced races Mdata races

Display Layout

O doy O fegto_par ® neato_par_init O neato_downwards

[Jtex

edit display options

Execution candidate no. 1 of 8

previous candidate | next candidate | next consistent goto |

previ(s&i}nt
Model Predicates

consistent race free execution = true
M consistent execution = true

] assumptions

v well formed threads

i well formed rf

i locks only consistent locks

v locks only consistent lo

v consistent mo

| S5C_accesses_consistent sc

v sc_fenced sc fences heeded

i consistent hb

i consistent rf

| det read

i consistent non atomic rf

i consistent atomic rf

2] coherent memory use

] rmw atomicity

i 5c_gc:esses_ﬁc_reads_res:ricted
unsequenced races are absent
data races are absent
indeterminate reads are absent
lockﬁ_only_baa_mu:exes are absent
a:Wna x=2

sh

b:wna y=0

mo

(6) CIWse x=3 H d:Rsc x=3
sbl

e’Wna y=1

Files: out exc, out.dot, out.dsp, out tex

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true

o —

Error Handling

E.7: State your preconditions
E.8: State your postconditions

= Precondition: should hold upon entry in a function.
» Postcondition: should hold upon exit from the function
= Assertion: should hold at its point in the computation.

int push(queue& q, int val)
[[expects: Iq.full()]]
[ensures Iqg.empty()]]4

[[assert: g.1s ok()]]

——— }

o —

Constants and Immutability

Con.2: By default, make member functions const

=truct Immutable{

std: :mutex m;

int read{() {
std::lock guard<std::mutex> lck(m);

= 7 - T T
+++++++ oL o L eyl WP O I I |

=) The method read should be const!

———

Constants and Immutability

= Physical constness:
= The object is const and can not be changed.

* Logical constness:
= The object is const but could be changed.

struct Immutable{
mutable std::mutex m;
int read() const |{
std: :lock guard<std::mutex> lck(m);

, =
AT 7 | =Ykl = s
L - L P) eyl PR S LW Y |

Templates and Generic Programming

| —

T.10: Specify concepts for all template arguments

= Concepts are a compile-time predicate.

= Usage

template<Integral T>
T gcd(T a, T b){
if(b == @){ return a; }
else{
return gcd(b, a % b);
b
}

———

Definition

template<typename T>
concept bool Integral(){
return std::1s _integral<T>::value;

¥

o —

Templates and Generic Programming

= Core language concepts = Object concepts
= Same = Destructible
» DerivedFrom = Constructible
= ConvertibleTo = DefaultConstructible
= Common = MoveConstructible
» [ntegral = Copy Constructible
= Signed Integral = Movable
» Unsigned Integral = Copyable
= Assignable = Semiregular
= Swappable * Regular
= (Callable concepts
= Comparison concepts = Callable
= Boolean = RegularCallable
» EqualityComparable = Predicate
= StrictTotallyOrdered = Relation

= StrictWeakOrder

Templates and Generic Programming

template <class T>
concept bool Integral() {
return 1s integral<T>::value;

h

template <class T>
concept bool SignedIntegral() {
return Integral<T>() && 1s signed<T>::value;

h

template <class T>
concept bool UnsignedIntegral() {
return Integral<T>() && !SignedIntegral<T>();

h

—

