


Guidelines

Best Practices for the Usage of C++

▪ Why do we need guidelines?

▪ C++ is a complex language in a complex domain.

▪ A new C++ standard is published every three years.

▪ C++ is used in safety-critical systems.

Reflect on your coding habits.



Most Prominent Guidelines

▪ MISRA C++

▪ Motor Industry Software Reliability Association

▪ The industry standard in the automotive, avionic, and medical domain

▪ Published 2008         C++03

▪ AUTOSAR C++14

▪ Based on C++14

▪ More and more used in automotive domain

▪ C++ Core Guidelines

▪ Community driven

https://www.misra.org.uk/misra-c-plus-plus/
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


Syntactic Form

▪ About 350 rules and a few hundred pages

▪ Each rule follows a similar structure

▪ The rule itself

▪ A rule reference number

▪ Reason(s)

▪ Example(s)

▪ Alternative(s)

▪ Exception(s)

▪ Enforcement

▪ See also(s)

▪ Note(s)

▪ Discussion
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Philosophy

Metarules for the concrete rules.

▪ Express intent and ideas directly in code.

▪ Write in ISO Standard C++ and use support libraries and supporting 

tools.

▪ A program should be statically type safe. When this is not possible, 

catch run time errors early.

▪ Don't waste resources such as space or time.

▪ Encapsulate messy constructs behind a stable interface.
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Interfaces

Interfaces should

▪ be explicit

▪ be strongly typed

▪ have a low number of arguments

▪ separate similar arguments

void showRectangle(double a, double b, double c, double d) {

...

}

void showRectangle(Point top_left, Point bottom_right);
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Functions

Distinguish between in, in/out, and out parameter

Cheap or impossible to 
copy

Cheap or moderate costs 
to move and don’t know

Expensive to 
move

In func(X) func(const X&)

In & retain “copy”

In & move from func(X&&)

In/Out func(X&)

Out X func()            func(X&)



Functions

Ownership semantic of function parameters.

Example Ownership Semantic

func(value) func is an independent owner of the

resource

func(pointer*) func has borrowed the resource

func(reference&) func has borrowed the resource

func(std::unique_ptr) func is an independent owner of the

resource

func(std::shared_ptr) func is a shared owner of the resource

ownershipSemantics.cpp

https://godbolt.org/z/P4KPaq3aP
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Classes and Class Hierarchies

Class hierarchies organize related classes into hierarchical 

structures.

class versus struct

▪ Use a class if it has an invariant

▪ Establish the invariant in a constructor

struct Point { 

int x;

int y;

};

class Date {

public:

Date(int yy, Month mm, char dd);

private:

int y;

Month m;

char d;

};



Concrete Types

A concrete type (value type) is not part of a type hierarchy. It can be 

created on the stack. 

A concrete type should be regular. 

▪ Default constructor: X()

▪ Copy constructor: X(const X&)                

▪ Copy assignment: operator = (const X&)      Big Six

▪ Move constructor: X(X&&)

▪ Move assignment: operator = (X&&)

▪ Destructor: ~(X)

▪ Swap operator: swap(X&, X&)

▪ Equality operator: operator == (const X&)



Classes and Class Hierarchies

The Big Six

▪ The compiler can generate them

▪ You can request a special member function via default

▪ You can delete a automatically generated function via delete

▪ Define all of them or none of them (rule of six or rule of zero)

▪ Define them consistently

▪ There are strong dependencies between the big six



Constructor

Don’t define a default constructor that only initializes data members; use 

member initialization instead

struct Widget {

Widget() = default;

Widget(int w): width(w) {}

private:

int width = 640;

};

Define the default behavior of each object in the class body. Use explicit 

constructors for variations of the default behavior.



Conversion Constructor and Operator

Make single-element constructors (conversion constructor) and 
conversions operators explicit.

class MyClass{

public:

explicit MyClass(A){}    // converting constructor

explicit operator B(){}  // converting operator

};

conversionOperator.cpp

convertingConstructor.cpp

https://godbolt.org/z/MoTMhPvTd
https://godbolt.org/z/d7aT8MdEn


Destructors

▪ Define a destructor if a class needs an explicit action at object 

destruction

▪ A base class destructor should either be public and virtual, or protected 

and non-virtual

▪ public and virtual: 

▪ You can destroy instances of derived classes through a base class pointer or reference

▪ protected and non-virtual:

▪ You cannot destroy instances of derived classes through a base class pointer or 

reference

▪ Destructors should not fail         make them noexcept
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Enumerations

Enumerations are used to define sets of integer values and also a type for 

such sets of values.

▪ Use enumerations to represent sets of related named constants

▪ Prefer enum classes over “plain”enums

▪ Specify enumerator values only when necessary
enum class Day: char {

jan = 1,

feb, 

... 

};

stronglyTypedEnum.cpp

https://godbolt.org/z/jdhWdYWse
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Resource Management: RAII

RAII stands for Resource Acquisition Is Initialization.

▪ Key idea: 

▪ Create a local guard object for your resource. 

▪ The constructor of the guard acquires the resource and the destructor of the 

guard releases the resource.

▪ The C++ run time manages the lifetime of the guard and, therefore, of the 

resource.

▪ Implementations

▪ Containers of the STL

▪ Smart pointers

▪ Locks

▪ std::jthread

raii.cpp

https://godbolt.org/z/GrWoddW41
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Good Names

▪ Good names are the most important rule for good software.

▪ Good names should

▪ be self-explanatory.            The shorter the scope, the shorter the name.

▪ don‘t be reused in nested scopes.

▪ should avoid similar-looking names:

if (i1 && l1 && ol && o1 && o0 && ol && I0 && l0) surprise();



Arithmetic

▪ Don’t mix signed and unsigned arithmetic.

#include <iostream>

int main() {

int x = -3;

unsigned int y = 7;

std::cout << x - y << '\n'; 

std::cout << x + y << '\n'; 

std::cout << x * y << '\n'; 

std::cout << x / y << '\n'; 

}

signedUnsigned.cpp

https://godbolt.org/z/de8v73eor
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Performance

Wrong optimization

▪ “premature optimization is the root of all evil” (Donald Knuth)

▪ Rule for optimization

▪ Measure with real-world data

▪ Versionize your performance test

▪ Importance of measuring

▪ Which part of the program is the bottleneck?

▪ How fast is good enough for the user?

▪ How fast could the program potentially be?



Performance

Enable Optimization

▪ Use move semantics if possible

▪ Use constexpr if possible

▪ Rely on the optimizer

▪ Write local code

▪ Write simple code

▪ Give the compiler additional hints (noexcept, final)
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Concurrency and Parallelism

Threads

▪ Prefer std::jthread to std::thread

▪ Don’t detach a thread

▪ Pass small amounts of data between threads by value

▪ To share ownership between unrelated threads use std::shared_ptr

threadDetach.cpp

https://godbolt.org/z/PKffe9Ta5


Concurrency and Parallelism

▪ Use each tool you can get to validate your concurrent code

▪ ThreadSanitizer

▪ Dynamic code analyzer

▪ Part of clang 3.2 and GCC 4.8

▪ Compile your program with –sanitize=thread -g

▪ CppMem

▪ Static code analyzer

▪ Validates small code snippets, typically including atomics

▪ Gives your deep insight into the C++ memory model

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
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Error Handling

Error handling consists of

▪ Detect the error

▪ Transmit information about an error to some handler code

▪ Preserve the valid state of a program

▪ Avoid resource leaks
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Constants and Immutability

▪ By default, make objects immutable

▪ Cannot be a victim of a data race

▪ Guarantee that they are initialized in a thread-safe way

▪ Distinguish between physical and logical constness of an object

▪ Casting away const from an original const object is undefined 

behavior if you modify it

castAwayConst.cpp

https://godbolt.org/z/aob91EK5K


Constants and Immutability

▪ Physical constness: 

▪ The object is const and cannot be changed.

▪ Logical constness: 

▪ The object is const but could be changed.
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Templates and Generic Programming

Use

▪ Use templates to express algorithms that apply to many argument types

Interfaces

▪ Use function objects (lambdas) to pass operations to algorithms.

▪ Let the compiler deduce the template arguments.

▪ Template arguments should be at least SemiRegular or Regular. 
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std::array and std::vector

Prefer std::array and std::vector to a C-array

▪ The container size is know at compile time and small            std::array

▪ The container size is not known at compile time or big            std::vector

▪ std::vector and std::array

▪ know it’s size.

▪ automatically manage its memory (RAII).

▪ allow the protected element access via the at-operator.

▪ have an ideal memory layout. 

std::array and std::vector should be your first choice for a sequence 

container.
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Further Information

C++ Core Guidelines Explained

Beautiful C++

Posts about the C++ Core Guidelines on Modernes C++ 

Modernes C++ Training

Modernes C++ Mentoring 

https://www.pearson.com/store/p/c-core-guidelines-explained-best-practices-for-modern-c-/P200000007274/9780136875673
https://www.pearson.com/en-us/subject-catalog/p/beautiful-c-30-core-guidelines-for-writing-clean-safe-and-fast-code/P200000009446/9780137647842
https://www.modernescpp.com/index.php/category/modern-c
https://www.modernescpp.net/
https://www.modernescpp.org/



