9 A & e ya—

> ‘ 4 o K3
v
! 1 » .. w'e %
'l)' 4 1 5 e 40" 1 -
SCL
Ut } .
o S * $ "Rainer Grimm
y e JF<lii =» .'*.) Ve, .
ta (myVec2.beqi * * ! Training, Coaching, and
3 ; . Technology Consulting
a * - -

http://www.modernescpp.net/

Smart Pointer

A First Overview
std: :unique ptr - Exclusive Ownership
std: :shared ptr —Shared Ownership

std: :weak ptr —Break of Cyclic References

Performance
Concurrency

Function Arguments and Return Values

o

Smart Pointer

A First Overview

o —

Overview

Smart pointers automatically manage the lifetime of its
resource.

= Smart Pointers

= Allocate und deallocate their resource in the constructor and
destructor according to the RAII idiom (Resource Acquisition Is
Initialization)

= Support automatic memory management with reference counting

= Are C++ answer to garbage collection

= Release the resource if the smart pointer goes out of scope

= Are available in four versions

Overview

C++ Description
Standard

std: :auto ptr

std::unique ptr

std: :shared ptr

std: :weak ptr

—

C++98

C++11

C++11

C++11

Owns the resource exclusively
,Moves" its resource during a copy
operation

Owns the resource exclusively
Can not be copied
Deals with non-copy objects

Shares a resource

Supports an reference counter to the
shared resource and manages it
Deletes the resource if the reference
counter becomes 0

Borrows the resource
Helps to break cyclic references
Doesn't change the reference counter

5

o —

Smart Pointer

std: :unique ptr - Exclusive Ownership

std::unique ptr .

The std::unique ptr exclusively manages the lifetime
of its resource.

" std::unlque ptr
= |s the replacement for the deprecated Smart Pointers
std::auto ptr
std::unique ptr doesn't support copy semantic
= Can be used in the containers and algorithms of the STL
Containers and algorithms can not use copy semantic
= Has no overhead in space and time compared to a raw pointer

= Can be parametrized with a deleter: std: :unique ptr<T,
Deleter>

= Can be specialized for arrays: std: :unique ptr<T[]>

——— 7

std::unique ptr .

Function ___________|Description

unig.release () Returns a pointer to the resource and
releases it

unig.get () Returns a pointer to the resource

uniqg.reset (ptr) = Resets the resource to a new one
= Deletes the old resource

unig.get deleter () Returns the deleter

std::make unique(....) Creates the resource and wraps itin a

std::unique ptr

o —

Smart Pointer

std: :shared ptr —Shared Ownership

o

std: :shared ptr

sharedl

- 1 1

std::shared_ptr<int>shared2(shared1)
— new int(5)

OE=]

shared2

— 10

std: :shared ptr -

std: :shared ptr shares aresource and manages Its
lifetime.

" std::shared ptr

» Has areference to the resource and the reference counter

= |ts C++ answer to garbage collection

» Has more/less overhead in time and space such as a raw pointer
= Deletes the resource

= Can have a given deleter
" shared ptr<int> shPtr(new int, Del()) ;.

The access to the control block of the std: :shared ptris
thread-safe.

——— 1

std: :shared ptr .

Function __________Description

sha.unique () Checks if the std:shared ptr is the unique
owner of the resource

sha.use count () Returns the value of the reference counter
sha.get () Returns a pointer to the resource
sha.reset (ptr) = Resets the resource

» Deletes eventually the resource
sha.get deleter|() Returns the deleter
std: :make shared(....) Creates the resource and wraps itin a

std::shared ptr

sharedPtr.cpp
‘ sharedPtrDeleter.cpp 12

o —

Smart Pointer

std: :weak ptr —Break of Cyclic References

std: :weak ptr .

std: :weak ptr IS nota classic smart pointer.

" std::weak ptr
= Owns no resource
= Borrows the resource from a std: : shared ptr

= Can not access the resource
= Cancreate a std: :shared ptr tothe resource

W

w)- The std::weak ptr doesn'tchange the reference counter
'$" = Helps to break cycles of std: : shared ptr

——— 14

\V v
e

std: :weak ptr .

Function ______[Description

wea.expired() Checks if the resource exists

wea.use_ count () Returns the value of the reference
counter

wea.lock () Createsa std::shared ptr tothe
resource if available B

wea.reset () Releases the resource

o

Cyclic References

L

Classic problem

* If std::shared ptr

builds a cycle, no
std::shared ptr will

be deleted automatically
Rescue:

= std:weak ptr breaks
the cycle

4
—)

4
—)

16

o

Cyclic References

shared_ptr

Daughter

‘ cyclicReferences.cpp 17

o —

Smart Pointers

Performance

———

Performance Comparison

std::chrono::duration<double> st = std::chrono::system clock::now();
for (long long i = 0 ; i < 100000000; ++1) {

int* tmp(new int (1)),

delete tmp;

// std::unique ptr<int> tmp(new int (i));

// std::unique ptr<int> tmp = std::make unique<int>(i);

// std::shared ptr<int> tmp(new int(i));

// std::shared ptr<int> tmp = std::make shared<int>(i);

}

auto dur=std::chrono::system clock::now() - st();

m Available Since

2.93s C++98

» std::unique ptr 296s C++11

std::make unique 2.84s C++14

std::cout << dur.count();

std: :shared ptr 6.00s C++11

‘ std: :make shared 3.40s C++11 19

o —

Smart Pointer

= Further information:

= std::unigue ptr
= std::shared pr
= std::weak ptr

20

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr

o —

Smart Pointer

Concurrency

o —

Concurrency

The management of the control block of a std: : shared ptr
IS thread-safe but not the access to the shared resource.

W

>(v)- To share ownership between unrelated threads use a
“g" std::shared ptr.

—

‘ threadSharesOwnershipSmartPtr.cpp 22

o —

Concurrency

std: :shared ptr contradiction in modern C++:

Use smart pointers but don‘t share.

3

Forget what you learned in Kindergarten.
Stop sharing. (Tony van Eerd)

Solution:
= C++11: Atomic operations for std: : shared ptr

= C++20: Atomic shared pointers
" std::atomic shared ptr

" std::atomic weak ptr

——— 2

Atomic Smart Pointers

Atomic smart pointers are part of the C++20 standard.
= Partial specialization of std: :atomic

" std::atomic shared ptr
» std::atomic<std::shared ptr<T>>

" std::atomic weak ptr
» std::atomic<std::weak ptr<T>>

———

24

o —

Smart Pointer

= Further information:

" std::atomic

" std::atomic<std::shared ptr>

" std::atomic<std::weak ptr>

25

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/memory/shared_ptr/atomic2
https://en.cppreference.com/w/cpp/memory/weak_ptr/atomic2

o —

Smart Pointer

Function Arguments and Return Values

o —

Functions

Ownership semantic for function parameters

Function Signature Ownership Semantic

func (value) * |s an independent owner of the resource
» Deletes the resource automatically at the end of func

func (pointer™*) = Borrows the resource
= The resource could be empty
= Must not delete the resource

func (referenceg) = Borrows the resource
= The resource could not be empty
= Must not delete the resource

func (std::unique ptr) = |san independent owner of the resource
= Deletes the resource automatically at the end of func

func (shared ptr) » |s a shared owner of the resource
= May delete the resource at the end of func

——— 27

o

Smart Pointer as Parameter

Function Signature Semantic

func (std::unique ptr<int>) func takes ownership
func (std::unique ptr<int>&) func might reseat int
func (std::shared ptr<int>) func shares ownership
func (std: :shared ptr<int>&) func might reseat int
func (const std::shared ptr<int>&) func might retain a

reference counter

" func(const std::shared ptr<int>&)
= Adds no value to a raw pointer or a reference

— 28

o —

Factory Method

int main () {

const Window* window = createWindow (Window: :Default)

Open question with a pointer interface:
= Who is the owner of the window?
= Who releases the resource?

Use smart pointers
= std::unique ptr:exclusive ownership
* std::shared ptr:shared ownership

——— 29

Smart Pointer

A First Overview
std: :unique ptr - Exclusive Ownership
std: :shared ptr —Shared Ownership

std: :weak ptr —Break of Cyclic References

Performance
Concurrency

Function Arguments and Return Values

