

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

The Standard Template Library: STL

Containers Algorithms

Callables

Containers Algorithms
Iterators

The Containers of the STL

Sequence Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered Associative Containers

std::map

std::set

std::multimap

std::multiset

Unordered Associative Containers

std::unordered_map

std::unordered_set

std::unordered_multimap

std::unordered_multiset

Interface of the Containers

The Containers

▪ have a type parameter(s) and an allocator.

template<typename T, typename Allocator = std::allocator<T>>

class vector;

▪ support the same basic functionality.

▪ provide value semantics.

Exceptions

▪ std::array has a fixed size you cannot change its size during run

time

▪ std::forward_list does not know its length

std::string is quite similar to std::vector<char>.

Create and Delete

Constructors

▪ Default std::vector<int> first;

▪ Count std::vector<int> sec(5);

▪ Range std::vector<int> third(sec.begin(), sec.end());

▪ Copy std::vector<int> fourth(third);

▪ Move std::vector<int> fifth(std::move(fourth));

▪ Sequence std::vector<int> sixth{1, 2, 3, 4, 5};

Create and Delete

Destructor

std::vector<int> first;

delete first;

Removing

std::vector<int> sixth{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

sixth.clear();

std::erase(sixth, 5);

std::erase_if(sixth, [](auto i){ return i >= 3; });

Determine the Size

std::vector<std::string> first{"one", "two", "three", "four"};

Empty?

first.empty();

Numbers of elements?

first.size();

Maximal size?

first.max_size();

Assignment and Swap

std::vector<std::string> first{"one", "two", "three", "four"};

std::vector<std::string> second{"five", "six"};

Assignment

second = first;

second = std::move(first);

second = {"seven", "eight"};

Swap

second.swap(first);

std::swap(second, first)

Comparison

All Containers
== and !=

Sequence and Ordered Associative Containers
<, <=, >, and >=

Rules

▪ The containers must have the same type.

▪ Two containers are equal, if they have the same elements in the same

sequence (applies to sequence containers and ordered associative

containers).

▪ The containers are compared lexicographically.

The Range-Based for loop

Syntax:
for (Declaration: Sequence){ . . .

Sequence: initializer list, C array, C++ string, STL container, or

range
std::vector<int> vec{1, 2, 3, 4, 5};

for (auto v: vec) std::cout << v << " "; // 1 2 3 4 5

You must take the arguments by reference to modify them.
int array[5] = {1, 2, 3, 4, 5};

for (auto& a: array) a *=2;

for (auto a: array) std::cout << a << " "; // 2 4 6 8 10

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

Sequence Containers: Overview

Characteristic std::array std::vector std::deque std::list std::forward_list

Size static dynamic dynamic dynamic dynamic

Implementation static array dynamic array sequence of arrays doubly linked list singly linked list

Access random access random access random access for- and backward forward

Optimized for end O(1) begin and end O(1) begin and end O(1) begin O(1)

Memory

reservation

yes no no no

Memory

release

shrink_to_fit() shrink_to_fit() always always

Iterator

invalidation

yes yes no no

Strength ▪ no memory

allocation

▪ minimal memory

requirements

95% solution insert and delete at the

begin and end

insert and delete at

each position

▪ fast insertion and deletion

▪ minimal memory requirements

Weakness no dynamic

memory allocation

insertion and deletion at

arbitrary positions O(n)

insertion and deletion at

arbitrary positions 0(n)

no random access no random access

std::array

std::array<int,10> myArr{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::array

▪ is a homogeneous container of fixed length.

▪ combines the memory and performance characteristics of the C array

with the interface of a C++ vector.

▪ knows it length.

1 1098765432

std::array

Aggregat Initialization

▪ std::array<int, 10> arr: Elements are not initialized

▪ std::array<int, 10> arr{}: Elements are default initialized

▪ std::array<int, 10> arr{1, 2, 3, 4, 5}: Remaining

elements are default initialized

std::vector

std::vector

▪ it’s a homogenous container of variable length.

▪ manages automatically its memory.

▪ stores it elements continuously. Supports the index operator

▪ reserves more memory than needed. reduces expensive memory allocation

std::vector<int> myInt{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

1 1098765432 grow

capacitysize

std::vector

Special elements

vec.front() first element (not checked)

vec.back() last element (not checked)

Index access

vec[n] vector boundaries are not checked

vec.at(n) vector boundaries are checked (std::out_of_range exception)

Pointer arithmetic

&vec[i] &vec[0] + i≡

std::vector

Elements

▪ Assign
vec.assign(...)

▪ Insert

vec.insert(pos, ...), vec.push_back(elem)

▪ In-place creation
vec.emplace(pos, args ...), vec.emplace_back(args ...)

▪ Clear
vec.pop_back(), vec.erase(...), vec.clear()

std::deque

std::deque<int> deq{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::deque (double ended queue)

▪ Extends the interface of std::vector

▪ deq.push_front(elem), deq.pop_front(), and deq.emplace_front(args ...)

1 2 43 5 76 8 109

std::list

std::list<int> lis{1, 2, 3, 4, 5, 6, 7, 8};

std::list

▪ is pretty different to std::array, std::vector, and std::deque.

▪ supports fast access at the front and end of the list.

std::list has special member functions optimized for pointer manipulation.

1 2 3 4 5 6 7 8

std::forward_list

std::forward_list<int> for{1, 2, 3, 4, 5, 6, 7, 8};

std::forward_list

▪ is a single linked list.

▪ is similar to std::list, but with a restricted interface.

▪ is optimized for minimal memory requirements.

std::forward_list is designed for the special use case.

1 2 3 4 5 6 7 8

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

Ordered Associative Containers

The ordered associative containers

▪ are analogous phone books.

▪ have a type(s), a comparison function, and an allocator.

template <typename Key, typename Value,

typename Compare = std::less<Key>,

typename Allocator = std::allocator<std::pair<const Key, Value>>>

class map;

Ordered Associative Containers Value Associated More Identical Keys Header

std::set no no <set>

std::multiset no yes <set>

std::map yes no <map>

std::multimap yes yes <map>

Ordered Associative Containers

Ordered associative Containers are
▪ binary, balanced search trees.

▪ sorted in ascending order (by default).

4
four

2
two

1
one

3
three

6
six

5
five

7
seven

std::map<int,std::string> int2String{{3, "three"}, {2, "two"},

{1, "one"}, {5, "five"},

{6, "six"}, {4, "four"},

{7, "seven"} };

Ordered Associative Containers

std::map

▪ is the most popular ordered associative container.

▪ supports the index operator [].

Index operator []

▪ enables the reading and writing access.

▪ Creates a new key/value pair if the key is not available,

invokes the default constructor for the value.

at operator

▪ Allows to read a key without creating the value

std::out_of_range exception

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

Unordered associative Containers

The unordered associative Containers

▪ are digital phone books.

▪ are also known as dictionary, associative arrays, or hash tables.

▪ extend the interface of the ordered associative containers.

Unordered Associative Containers Value
Available

More Identical Keys Header

std::unordered_set no no <unordered_set>

std::unordered_multiset no yes <unordered_set>

std::unordered_map yes no <unordered_map>

std::unordered_multimap yes yes <unordered_map>

Unordered associative Containers

The unordered associative Containers

▪ have a data type(s), a hash function, a equal function, and an allocator.

template<typename Key, typename Value,

typename Hash = std::hash<Key>,

typename KeyEqual = std::equal_to<Key>,

typename Allocator = std::allocator<std::pair<const Key, Value>>>

class unordered_map;

Unordered Associative Containers

The hash function maps the key in constant time to its index.

std::unorderet_map<std::string, int> {{"Grimm", 4916343333},

{"Grimm-Jaud", 491601233},

{"Schmidt", 49133318},

{"Huber", 4900013}};

Key Hash function Bucket

Unordered Associative Containers

Collision:

▪ Unordered associative containers store their keys in the buckets.

▪ Different keys with the same hash value can be stored in the same bucket.

▪ The access time of the bucket is constant, the search in the bucket is linear.

Capacity:

▪ Number of buckets

Load factor:

▪ Average number of elements of each bucket.

Rehashing:

▪ New buckets are created per default, if the load factor is bigger than 1.

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

std::array and std::vector

Prefer std::array and std::vector to a C-array

▪ The container size is know at compile time and small std::array

▪ The container size is not known at compile time or big std::vector

▪ std::vector and std::array

▪ know it’s size.

▪ automatically manage its memory (RAII).

▪ allow the protected element access via the at-operator.

▪ have an ideal memory layout.

std::array and std::vector should be your first choice for a sequence

container.

Sequence Containers

Performance Comparison

▪ Sum up all 100‘000‘000 values of various sequence containters using
std::accumulate

▪ Used sequence containers: std::vector, std::deque, std::list, and

std::forward_list

Computer architectures are optimized for the reading of contigious memory blocks.

memory predictability

Sequence Containers

Relative Performance

Sequence Containers

Linux Windows

Absolute Performance

std::map or std::unordered_map

Performance Comparison:

▪ Reading all keys of a std::map and a std::unordered_map

▪ Container size: Roughly 90’000 – 90’000’000 entries

std::map or std::unordered_map

Relative Performance

std::map or std::unordered_map

std::map std::unordered_map

Absolute Performance

Containers of the STL

General

Overview

Common
Interface

Range-based for
loop

Sequence
Containers

std::array

std::vector

std::deque

std::list

std::forward_list

Ordered
Associative
Containers

Structure

Implementation

Unordered
Associative
Containers

Structure

Implementation

Best Friends

Sequence
Containers

Associative
Containers

Further Information

The C++ Standard Library

Posts on Modernes C++

Modernes C++ Training

Modernes C++ Mentoring

https://leanpub.com/cpplibrary
https://www.modernescpp.net/
https://www.modernescpp.com/
https://www.modernescpp.net/
https://www.modernescpp.net/
https://www.modernescpp.org/

