


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Class

C++ supports for class types: 
▪ class

▪ struct

▪ union (I ignore them)

▪ Class types encapsulate its members and member 

functions from the outside world.

Information hiding

Separation from interface and implementation



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Inheritance

The inheriting class 

▪ gets all members and member functions from the inherited class.

▪ uses the members and the member functions of the inherited class 

and adds new ones.

▪ The access specifier of the inherited class and the access 

specifier of the inheritance must be considered. 

Don’t inherit for code reuse. Inherit, when you want to 

express a logical structure. 

inheritanceAccessRights.cpp

https://godbolt.org/z/4nK6sh4Gq


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Polymorphism

Polymorphism (poly morphs) is the characteristic of an object 

to behave differently at run time.

Polymorphism

▪ Inheritance is the base of polymorphism

▪ Enables the separation of interfaces and implementation.

▪ Involves a small overhead (pointer indirection).       

The separation of the interface and its implementation is 

one of the crucial ideas of modern software design.



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Virtuality

Virtuality requires a

▪ virtual member function, and

▪ a pointer or reference.

Distinguish between the static type and the dynamic type of an 

object.

BankAccount bankAccount;

Account* aPtr = &bankAccount;

aPtr->deposit(50.5);

Account& aRef = bankAccount;

aRef.deposit(50.5);

struct Account {

virtual void deposit(double) {...}

};

struct BankAccount: Account {

void deposit(double) override {...} 

};



Virtuality

Rules to keep in mind

▪ Constructor cannot be virtual.

▪ A virtual member function stays virtual in the class hierarchy.

▪ The overriding member function must be identical to the 

overridden virtual function including the parameters, the return 
type, and the const qualifiers.

▪ Pure virtual member functions suppress the instantiation of a 

class and can have default implementations.

struct Window {

virtual void show() = 0;

};

void Window::show() { // implementation }

Window is an abstract base class.



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



override and final

An override declared function expresses that this function 

overrides a virtual function of a base class. 

A final declared function expresses that this function 

overrides a virtual member and cannot be overridden.

▪ Member functions declared as final are an optimization 

opportunity for the compiler.

▪ Both variants are equivalent:
void func() final;

virtual void func() final override;

The compiler checks that the programmer follows the 

contract.



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Template Method

Type

▪ Behavioral pattern

Purpose

▪ An algorithm consists of a typical sequence of steps.

▪ Subclasses can adapt the steps, but not the sequence

Use

▪ An algorithm consists of the same sequence of steps.

▪ The steps may vary between the variations of the algorithms.

Alternative

▪ Strategy Pattern

https://en.wikipedia.org/wiki/Strategy_pattern


Template Method

AbstractClass

▪ Defines the structure of the algorithm.

▪ Defines the steps of the algorithm that can be adapted by

subclasses.

ConcreteClass

▪ Overrides the specific steps of the algorithm.

templateMethod.cpp

https://godbolt.org/z/PoshPxKae


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Destructors

Define a destructor if a class needs an explicit action at 

object destruction.

▪ A base class destructor should either be public and 

virtual, or protected and non-virtual.

▪ public and virtual: 

▪ Base class pointers or references can destroy instances of derived 

classes.

▪ protected and non-virtual:

▪ Base class pointers or references cannot destroy instances of 

derived classes.

Destructors should not fail; make them noexcept



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Liskov Substitution Principle

Objects in a program should be replaceable with instances 

of their subtypes without altering the correctness of that 

program (L in SOLID). 

▪ Application of separation of interface and implementation 

in a class hierarchy

▪ Define the functionality of the interface and use an 

implementation.



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Inheritance (Interface/Implementation)

A class hierarchy represents a set of hierarchically 

organized concepts. Base classes typically act as 

interfaces.

▪ Interface inheritance uses public inheritance. It 

separates users from implementations to allow derived 

classes to be added and changed without affecting the 

users of base classes.

▪ Implementation inheritance often uses private

inheritance. Typically, the derived class provides its 

functionality by adapting functionality from base classes.



Implementation Inheritance (Adapter)

Type

▪ Structural pattern

Purpose

▪ Translate one interface into another interface

Use

▪ A class has the incorrect interface.

▪ Definition of an interface for many similar classes

Alternative

▪ Composition (The objects holds its adapted object.)

https://en.wikipedia.org/wiki/Adapter_pattern


Implementation Inheritance (Adapter)

Client

▪ Uses the methodA() of the Adaptor

Adaptor

▪ Derives public from Interface and private from

Implementation.

▪ Supports the functionality of methodA() using multiple 

inheritance.

adapter.cpp

https://godbolt.org/z/daebezPYP


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Covariant Return Type

Enables it for an overriding member function to return a 

subtype of the return type of the overridden member 

function.

class Base {

public:

virtual Base* clone() const {

return new Base(*this); 

}

};

class Derived : public Base {

public:

Derived* clone() const override {

return new Derived(*this); 

}

};



Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Duck Typing

“When I see a bird that walks like a duck and swims like a 

duck and quacks like a duck, I call that bird a duck.” (James 

Whitcomb Riley)

▪ Use:

▪ Templates

▪ Interpreter languages (Python)

Don’t ask for permisson, ask for forgiveness.



Duck Typing

Let it crash and deal with the error.        

▪ Failed template instantiation of SFINAE

▪ Exception handling 
try:

swim(duck)

except TypeError:

print(“This was not a duck!!!”)

Distinguish between:

▪ Interface design: contract driven design

void swim(const Duck* duck)

▪ Duck typing: behavioral driven design

template <typename Duck>

void swim(Duck duck);

https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Virtual in Constructor/Destructor

Don’t call virtual functions in constructors and destructors.

▪ Pure virtual:           undefined behavior

▪ Virtual:         virtual call mechanism is disabled

virtualCall.cpp

https://godbolt.org/z/jqYdozEEj


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Slicing

When a derived class is copied to a base class, the derived 

class becomes a base class. 

▪ For making deep copies of polymorphic classes prefer a 
virtual member function clone instead of a copy 

constructor or copy assignment operator.     

Factory method (virtual constructor)

slice.cpp

clone.cpp

https://en.wikipedia.org/wiki/Factory_method_pattern
https://godbolt.org/z/q139f3M4d
https://godbolt.org/z/s6Gzjxf9r


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
(interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



Shadowing

A member function of a derived class shadows the member 

functions of its base class with the same name. 

struct Base {

void func(double d) { std::cout << "f(double) \n"; }

};

struct Derived: public Base {

void func(int i) { std::cout << "f(int) \n"; }

};

Derived der;

der.func(2020.5);  // f.double()

Derived::func shadows Base::func



Shadowing

Create an overload set for a derived class and its base 
classes with using.

struct Derived: public Base {

void func(int i) { std::cout << "f(int) \n"; }

using Base::func; // exposes func(double)

};

shadowing.cpp

https://godbolt.org/z/xbT91Mqb5


Object-Oriented Programming

Key Ideas

Class

Inheritance

Polymorphism

Early and Late 
Binding

Virtuality

override

final

Template method

Destructor

Interfaces

Liskov substitution 
principle

Inheritance 
interface versus 
implemenation)

Covariant return 
type

Duck Typing

Traps

Virtual in con-
/destructor

Slicing

Shadowing



www.ModernesCpp.com

Rainer Grimm

Training, Coaching, and 

Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

