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Class

C++ supports for class types: 
▪ class

▪ struct

▪ union (I ignore them)

▪ Class types encapsulate its members and member 

functions from the outside world.

Information hiding

Separation from interface and implementation
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Inheritance

The inheriting class 

▪ gets all members and member functions from the inherited class.

▪ uses the members and the member functions of the inherited class 

and adds new ones.

▪ The access specifier of the inherited class and the access 

specifier of the inheritance must be considered. 

Don’t inherit for code reuse. Inherit, when you want to 

express a logical structure. 

inheritanceAccessRights.cpp

https://godbolt.org/z/4nK6sh4Gq
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Polymorphism

Polymorphism (poly morphs) is the characteristic of an object 

to behave differently at run time.

Polymorphism

▪ Inheritance is the base of polymorphism

▪ Enables the separation of interfaces and implementation.

▪ Involves a small overhead (pointer indirection).       

The separation of the interface and its implementation is 

one of the crucial ideas of modern software design.
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Virtuality

Virtuality requires a

▪ virtual member function, and

▪ a pointer or reference.

Distinguish between the static type and the dynamic type of an 

object.

BankAccount bankAccount;

Account* aPtr = &bankAccount;

aPtr->deposit(50.5);

Account& aRef = bankAccount;

aRef.deposit(50.5);

struct Account {

virtual void deposit(double) {...}

};

struct BankAccount: Account {

void deposit(double) override {...} 

};



Virtuality

Rules to keep in mind

▪ Constructor cannot be virtual.

▪ A virtual member function stays virtual in the class hierarchy.

▪ The overriding member function must be identical to the 

overridden virtual function including the parameters, the return 
type, and the const qualifiers.

▪ Pure virtual member functions suppress the instantiation of a 

class and can have default implementations.

struct Window {

virtual void show() = 0;

};

void Window::show() { // implementation }

Window is an abstract base class.
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override and final

An override declared function expresses that this function 

overrides a virtual function of a base class. 

A final declared function expresses that this function 

overrides a virtual member and cannot be overridden.

▪ Member functions declared as final are an optimization 

opportunity for the compiler.

▪ Both variants are equivalent:
void func() final;

virtual void func() final override;

The compiler checks that the programmer follows the 

contract.
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Template Method

Type

▪ Behavioral pattern

Purpose

▪ An algorithm consists of a typical sequence of steps.

▪ Subclasses can adapt the steps, but not the sequence

Use

▪ An algorithm consists of the same sequence of steps.

▪ The steps may vary between the variations of the algorithms.

Alternative

▪ Strategy Pattern

https://en.wikipedia.org/wiki/Strategy_pattern


Template Method

AbstractClass

▪ Defines the structure of the algorithm.

▪ Defines the steps of the algorithm that can be adapted by

subclasses.

ConcreteClass

▪ Overrides the specific steps of the algorithm.

templateMethod.cpp

https://godbolt.org/z/PoshPxKae
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Destructors

Define a destructor if a class needs an explicit action at 

object destruction.

▪ A base class destructor should either be public and 

virtual, or protected and non-virtual.

▪ public and virtual: 

▪ Base class pointers or references can destroy instances of derived 

classes.

▪ protected and non-virtual:

▪ Base class pointers or references cannot destroy instances of 

derived classes.

Destructors should not fail; make them noexcept
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Liskov Substitution Principle

Objects in a program should be replaceable with instances 

of their subtypes without altering the correctness of that 

program (L in SOLID). 

▪ Application of separation of interface and implementation 

in a class hierarchy

▪ Define the functionality of the interface and use an 

implementation.
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Inheritance (Interface/Implementation)

A class hierarchy represents a set of hierarchically 

organized concepts. Base classes typically act as 

interfaces.

▪ Interface inheritance uses public inheritance. It 

separates users from implementations to allow derived 

classes to be added and changed without affecting the 

users of base classes.

▪ Implementation inheritance often uses private

inheritance. Typically, the derived class provides its 

functionality by adapting functionality from base classes.



Implementation Inheritance (Adapter)

Type

▪ Structural pattern

Purpose

▪ Translate one interface into another interface

Use

▪ A class has the incorrect interface.

▪ Definition of an interface for many similar classes

Alternative

▪ Composition (The objects holds its adapted object.)

https://en.wikipedia.org/wiki/Adapter_pattern


Implementation Inheritance (Adapter)

Client

▪ Uses the methodA() of the Adaptor

Adaptor

▪ Derives public from Interface and private from

Implementation.

▪ Supports the functionality of methodA() using multiple 

inheritance.

adapter.cpp

https://godbolt.org/z/daebezPYP
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Covariant Return Type

Enables it for an overriding member function to return a 

subtype of the return type of the overridden member 

function.

class Base {

public:

virtual Base* clone() const {

return new Base(*this); 

}

};

class Derived : public Base {

public:

Derived* clone() const override {

return new Derived(*this); 

}

};
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Duck Typing

“When I see a bird that walks like a duck and swims like a 

duck and quacks like a duck, I call that bird a duck.” (James 

Whitcomb Riley)

▪ Use:

▪ Templates

▪ Interpreter languages (Python)

Don’t ask for permisson, ask for forgiveness.



Duck Typing

Let it crash and deal with the error.        

▪ Failed template instantiation of SFINAE

▪ Exception handling 
try:

swim(duck)

except TypeError:

print(“This was not a duck!!!”)

Distinguish between:

▪ Interface design: contract driven design

void swim(const Duck* duck)

▪ Duck typing: behavioral driven design

template <typename Duck>

void swim(Duck duck);

https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
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Virtual in Constructor/Destructor

Don’t call virtual functions in constructors and destructors.

▪ Pure virtual:           undefined behavior

▪ Virtual:         virtual call mechanism is disabled

virtualCall.cpp

https://godbolt.org/z/jqYdozEEj
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Slicing

When a derived class is copied to a base class, the derived 

class becomes a base class. 

▪ For making deep copies of polymorphic classes prefer a 
virtual member function clone instead of a copy 

constructor or copy assignment operator.     

Factory method (virtual constructor)

slice.cpp

clone.cpp

https://en.wikipedia.org/wiki/Factory_method_pattern
https://godbolt.org/z/q139f3M4d
https://godbolt.org/z/s6Gzjxf9r
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Shadowing

A member function of a derived class shadows the member 

functions of its base class with the same name. 

struct Base {

void func(double d) { std::cout << "f(double) \n"; }

};

struct Derived: public Base {

void func(int i) { std::cout << "f(int) \n"; }

};

Derived der;

der.func(2020.5);  // f.double()

Derived::func shadows Base::func



Shadowing

Create an overload set for a derived class and its base 
classes with using.

struct Derived: public Base {

void func(int i) { std::cout << "f(int) \n"; }

using Base::func; // exposes func(double)

};

shadowing.cpp

https://godbolt.org/z/xbT91Mqb5
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