m
Back to Basics:

Object-Oriented Programming

RAINER GRIMM

&
@ Cppcon %']] AN

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

(N\ 4 N\
— Class — Virtuality
(. J \ J
4 2\ 4 2\
i override
— Inheritance — .
final
G J G J
4 2\ 4 2\
— Polymorphism — Template method
G J G J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Class

C++ supports for class types:
" class
" struct
* union (lignore them)

» Class types encapsulate its members and member
functions from the outside world.
ﬂ Information hiding

W\

5,(\;?5 Separation from interface and implementation

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4) 4 N\
) override
— Inheritance — :
final
(. J & J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Inheritance

The inheriting class
= gets all members and member functions from the inherited class.

= yses the members and the member functions of the inherited class
and adds new ones.

» The access specifier of the inherited class and the access
specifier of the inheritance must be considered.

Sy

()= Don't inherit for code reuse. Inherit, when you want to
express a logical structure.

inheritanceAccessRights.cpp

https://godbolt.org/z/4nK6sh4Gq

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4) 4 N\
— Polymorphism — Template method
(. J & J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Polymorphism

Polymorphism (poly morphs) is the characteristic of an object
to behave differently at run time.

Polymorphism
» |nheritance is the base of polymorphism
» Enables the separation of interfaces and implementation.
* |nvolves a small overhead (pointer indirection).

:“‘,,; 2 The separation of the interface and its implementation is

$" one of the crucial ideas of modern software design.

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 1\ 4)
— Class — Virtuality
. J & J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Virtuality .

Virtuality requires a
= virtual member function, and
= a pointer or reference.

struct Account { BankAccount bankAccount;
virtual void deposit (double) {...}

b Account* aPtr = &bankAccount;

aPtr->deposit (50.5);
struct BankAccount: Account {

void deposit (double) override {...} Account& aRef = bankAccount;
b aRef.deposit (50.5);

m) Distinguish between the static type and the dynamic type of an
object.

o —

Virtuality

Rules to keep in mind

= Constructor cannot be virtual.
= A virtual member function stays virtual in the class hierarchy.

= The overriding member function must be identical to the
overridden virtual function including the parameters, the return
type, and the const qualifiers.

= Pure virtual member functions suppress the instantiation of a
class and can have default implementations.
struct Window {
virtual void show() = 0;
I

void Window::show() { // implementation }

=) \Window is an abstract base class.

Object-Oriented Programming

Early and Late

Key Ideas BTnaine

Interfaces

Traps

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 1\ 4)
) override
— Inheritance — :
final
& J & J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

override and final .

An override declared function expresses that this function
overrides a virtual function of a base class.

A final declared function expresses that this function

overrides a virtual member and cannot be overridden.

» Member functions declared as final are an optimization
opportunity for the compiler.

= Both variants are equivalent:
void func () final;

virtual void func () final override;

W\

= W’;’. The compiler checks that the programmer follows the
"§" contract.

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 1\ 4)
— Polymorphism — Template method
& J & J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Template Method

Type

= Behavioral pattern

Purpose
= An algorithm consists of a typical sequence of steps.
» Subclasses can adapt the steps, but not the sequence

Use
= An algorithm consists of the same sequence of steps.
» The steps may vary between the variations of the algorithms.

Alternative
= Strateqy Pattern

https://en.wikipedia.org/wiki/Strategy_pattern

Template Method

AbstractClass

operation1{)
operaticn2()
operaticna()
templatehlethod{)

templateblethod(] -
operationl{)
operationd{) rﬂ

- i
operation3{) i

| ConcreteClass

perationi{)
peration{)
peraticnd{)

AbstractClass

» Defines the structure of the algorithm.

» Defines the steps of the algorithm that can be adapted by
subclasses.

ConcreteClass

= Qverrides the specific steps of the algorithm.

templateMethod. cpp

https://godbolt.org/z/PoshPxKae

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4)
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Destructors

Define a destructor if a class needs an explicit action at
object destruction.

= A base class destructor should either be public and
virtual, or protected and non-virtual.

» public and virtual:

= Base class pointers or references can destroy instances of derived
classes.

» protected and non-virtual:

= Base class pointers or references cannot destroy instances of
derived classes.

!

5@:’ Destructors should not fail; make them noexcept

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Binding

4 2\ 4 2\
— Class — Virtuality
& J & J
4 2\ 4 2\
i override
— Inheritance — :
final
G J G J
4 2\ 4 2\
— Polymorphism — Template method
G J G J
4 2\
— Destructor

Ve

Liskov substitution
principle

Traps

Virtual in con-
/destructor

Inheritance
(interface versus
implemenation)

Slicing

Covariant return
type

Shadowing

Duck Typing

Liskov Substitution Principle

Objects in a program should be replaceable with instances

of their subtypes without altering the correctness of that
program (L in SOLID).

= Application of separation of interface and implementation
In a class hierarchy

= Define the functionality of the interface and use an
Implementation.

Object-Oriented Programming

Early and Late

Key Ideas pTnaine

Interfaces

Traps

4 2\ 4 2\
— Class — Virtuality
& J & J
4 2\ 4 2\
i override
— Inheritance — :
final
G J G J
4 2\ 4 2\
— Polymorphism — Template method
G J G J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Inheritance (Interface/Implementation)

A class hierarchy represents a set of hierarchically
organized concepts. Base classes typically act as
Interfaces.

= [nterface inheritance uses public inheritance. It
separates users from implementations to allow derived
classes to be added and changed without affecting the
users of base classes.

= Implementation inheritance often uses private

Inheritance. Typically, the derived class provides its
functionality by adapting functionality from base classes.

Implementation Inheritance (Adapter)

Type

= Structural pattern

Purpose
= Translate one interface into another interface

Use
= Aclass has the incorrect interface.
= Definition of an interface for many similar classes

Alternative
= Composition (The objects holds its adapted object.)

https://en.wikipedia.org/wiki/Adapter_pattern

| _—

Implementation Inheritance (Adapter)

sdaptormethodAl IT Implementation-methodSpec islcj
Client

» UsesthemethodA () ofthe Adaptor

Adaptor

» Derives public from Interface and private from
Implementation.

= Supports the functionality of methodAa () using multiple
Inheritance.

adapter.cpp

https://godbolt.org/z/daebezPYP

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Covariant Return Type

Enables it for an overriding member function to return a

subtype of the return type of the overridden member
function.

class Base {
public:
virtual Base* clone () const {

return new Base (*this);
}
Y

class Derived : public Base {
public:
Derived* clone () const override {
return new Derived(*this);

}

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Duck Typing

“When | see a bird that walks like a duck and swims like a
duck and quacks like a duck, | call that bird a duck.” (James
Whitcomb Riley)

= Use:
= Templates
» [nterpreter languages (Python)

L\

-Z(@_g" Don’t ask for permisson, ask for forgiveness.
g\

Duck Typing

Let it crash and deal with the error.
» Failed template instantiation of SFINAE

= EXxception handling
Ltry:

swim (duck)
except Typekrror:

print (“This was not a duck!!!”)

Distinguish between:

» |nterface design: contract driven design
vold swim(const Duck* duck)

» Duck typing: behavioral driven design
template <typename Duck>

void swim (Duck duck) ;

https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

Virtual in Constructor/Destructor

Don’t call virtual functions in constructors and destructors.
= Pure virtual: # undefined behavior

= Virtual: -virtual call mechanism is disabled

virtualCall.cpp

https://godbolt.org/z/jqYdozEEj

Object-Oriented Programming

Early and Late

Key Ideas BTnaine

Interfaces

Traps

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Slicing

When a derived class is copied to a base class, the derived
class becomes a base class.

* For making deep copies of polymorphic classes prefer a
virtual member function clone instead of a copy

constructor or copy assignment operator.

- Factory method (virtual constructor)

slice.cpp
clone.cpp

https://en.wikipedia.org/wiki/Factory_method_pattern
https://godbolt.org/z/q139f3M4d
https://godbolt.org/z/s6Gzjxf9r

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— (interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

o —

Shadowing

A member function of a derived class shadows the member
functions of its base class with the same name.

struct Base {
void func (double d) { std::cout << "f (double) \n"; }

struct Derived: public Base {
void func (int i) { std::cout << "f(int) \n"; }

b

Derived der;
der.func(2020.5); // f.double ()

- Derived: : func shadows Base::func

o —

Shadowing

Create an overload set for a derived class and its base
classes with using.

struct Derived: public Base {
void func (int i) { std::cout << "f (int) \n"; }
using Base::func; // exposes func (double)

b

shadowing.cpp

https://godbolt.org/z/xbT91Mqb5

Object-Oriented Programming

Early and Late

Key Ideas

Interfaces

Traps

Binding

4 2\ 4 2\
— Class — Virtuality
\\§ J \\§ J
4 2\ 4 2\
) override
— Inheritance — :
final
(. J - J
4 2\ 4 2\
— Polymorphism — Template method
(. J - J
4 2\
— Destructor

Liskov substitution
principle

Virtual in con-
/destructor

Inheritance

— interface versus

implemenation)

Slicing

Covariant return
type

Shadowing

— Duck Typing

"Rainer Grimm

Training, Coaching, and
. Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

