- PRIMEDIC”

Saves Life. Everywhere.

Functional Programming in
C++

An Overview

- Programming in a
functional style

- Why functional
programming?

- What is functional
programming?

= Characteristics of
functional programming

- What's missing?

A PRIMEDIC"

Saves Life. Everywhere.

Functional in C++

- Automatic type deduction

for (auto v: myVec) std::cout << v << " ",

= Lambda-functions
int a= 2000, b= 11;

auto sum= std::async([=]{return a+tb;});

= Partial function application
std: :function and std::bind

lambda-functions and auto

Haskell Curry Moses Schdnfinkel

A PRIMEDIC"

Saves Life. Everywhere.

Functional in C++

= Higher-order functions
std: :vec<int> vec{l,2,3,4,5,0,7,8,9};
std::for each(vec.begin(),vec.end(), [] (int& v) { v+= 10 });
std::for each(vec.begin(),vec.end(),

[] (int v){ cout << " " K< v });

) 11121314151617 18 19

= Generic Programming (Templates)
- Standard Template Library
- Template Metaprogramming

Alexander Stepanov

A PRIMEDIC"

Saves Life. Everywhere.

Why functional?

- More effective use of the Standard Template Library

std::accumulate (vec.begin(),vec.end(),
[] (int a, int Db) {return a+b;});

= Recognizing functional patterns
template <int N>
struct Fac{ static int const val= N * Fac<N-1>::val; };
template <>

struct Fac<0>{ static int const val= 1; };

- Better programming style
= reasoning about side effects
= more concise

A PRIMEDIC"

Saves Life. Everywhere.

Functional programming?

- Functional programming is programming with mathematical
functions.

- Mathematical functions are functions that each time return the
same value when given the same arguments (referential
transparency).

= Consequences:
= Functions are not allowed to have side effects.

= The function invocation can be replaced by the result,
rearranged or given to an other thread.

- The program flow will be driven by the data dependencies.

aks PRIMEDIC"

Saves Life. Everywhere.

Characteristics

First-class
functions

Higher-order

Lazy evaluation .
y functions

Characteristics of

functional
Manipulatiory programing Immutable data
of lists
Recursion Pure functions

A PRIMEDIC"

Saves Life. Everywhere.

First-class functions

= First-class functions are first-class
citizens.

[J C++11 ™ Functions are like data.

- Functions
[J C++ = can be passed as arguments to

other functions.

' C = can be returned from other
functions.

= can be assigned to variables or
stored in a data structure.

A PRIMEDIC"

Saves Life. Everywhere.

First-class functions

std: :map<const char, function< double (double,double)> > tab;

tab.insert (std::make pair('+', [] (double a,double b) {return a + b;}));
tab.insert (std::make pair('-', [] (double a,double b) {return a - b;}));
tab.insert (std::make pair('*', [] (double a,double b) {return a * b;}));
tab.insert (std::make pair('/', [] (double a,double Db) {return a / b;}));
cout << "3.544.5= " << tab['+'](3.5,4.5) << endl; W 8

cout << "3.5%4.5= " << tab['*'](3.5,4.5) << endl; W 1575

tab.insert (std::make pair('"',
[] (double a,double b) {return std::pow(a,b);})):

cout << "3.544.5= " << tab['~'](3.5,4.5) << endl; W 280.741

A PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions

Higher-order functions are functions that accept other functions
as argument or return them as result.

= The three classics:
= map:
Apply a function to each element of
a list.
filter:

Remove elements from a list.
- fold:

Reduce a list to a single value by successively applying a
binary operation.

(source: http://musicantic.blogspot.de, 2012-10-16)

A PRIMEDIC"

Saves Life. Everywhere.

http://musicantic.blogspot.de/

Higher-order functions

- Each programming language supporting programming in a
functional style offers map, filter and fold.

Haskell | Python

map map std::transform
filter filter std::remove_if
fold* reduce std: :accumulate

= map, filter and fold are 3 powerful functions which are applicable in
many cases.

=) map + reduce= MapReduce

A PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions

- Lists and vectors:

- Haskell

vec= [1 . . 9]

str= ["Programming","in","a","functional", "style."]
= Python

vec=range (1, 10)

str=["Programming","in","a", "functional","style."]
» C++

std::vector<int> vec{l,2,3,4,5,6,7,8,9}

std: :vector<string>str{"Programming","in","a", "functional",
"style."}

=) The results will be displayed in Haskell or Python notation.

aks PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions: map

« Haskell
map (\a —» a”2) vec

map (\a -> length a) str

- Python
map (lambda x : x*x , vec)
map (lambda x : len(x),str)
= C++

std::transform(vec.begin(),vec.end(),vec.begin (),
[] (int 1) { return 1*1i; });

std::transform(str.begin(),str.end(),back inserter (vec2),
[] (std::string s){ return s.length(); }):

mm) [1,4,9,16,25,36,49,64,81]
=) [11,2,1,10,6]

A PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions: filter

- Haskell
filter (\x-> x<3 || x>8) vec
filter (\x - isUpper (head x)) str

- Python
filter (lambda x: x<3 or x>8 , vec)

filter (lambda x: x[0].isupper(),str)

« C++
auto 1t= std::remove if (vec.begin(),vec.end(),
[] (int 1) { return !'((i < 3) or (1 > 8)) 1});
auto 1t2= std::remove if(str.begin(),str.end(),
[] (string s){ return ! (isupper (s[0])); 1});

) [1,2,9]

[“Programming’]

A PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions: fold

« Haskell:

foldl (\a b - a * b) 1 vec

foldl (\a b - a ++ ":" ++ b) "" str
= Python:

reduce (lambda a , b: a * b, vec, 1)
reduce (lambda a, b: a + b, str,"")
» C++:

std::accumulate (vec.begin(),vec.end(), 1,
[] (i1nt a, int b){ return a*b; });

std::accumulate (str.begin(),str.end(),string(""),
[] (string a,string b){ return a+":"+b; });

) 362800

“:Programming:in:a:functional:style.”

A PRIMEDIC"

Saves Life. Everywhere.

Higher-order functions: fold

std::vector<int> v{1l,2,3,4};
std::accumulate (v.begin(),v.end(),1,[] (int a, 1nt b) {return a*b;});

|

1 > {
}
1 *

1

'
1
1

*

ks PRIMEDIC”‘

s Life. Everywher

Immutable data

Data are immutable in pure functional languages.
=) Distinction between variables and values

« Conseqguences
= There is no
= Assignment: X=X+ 1, ++x
= Loops: for, while , until
= |n case of data modification

- changed copies of the data will be generated.
= the original data will be shared.

mm) |Immutable data are thread safe.

A PRIMEDIC"

Saves Life. Everywhere.

Immutable data

 Haskell

gsort [] = T[]
gsort (x:xs) = gsort [y | yv <- x5, y < x] ++ [x] ++ gsort [y | y <= xs, y >= x]

e C++
void quickSort (int arr[], int left, int right) {
int i = left, j = right;
int tmp;
int pivot = arr[abs((left + right) / 2)];
while (i <= j) {
while (arr[i] < pivot) 1i++;
while (arr[j] > pivot) j--;
if (1 <= J) |

tmp = arr[i];
arr[i] = arr[]j];
arr[j] = tmp;

i++; J--;

}
if (left < j) quickSort (arr,left,j);
if (i < right) quickSort (arr,i,right);

A PRIMEDIC"

Saves Life. Everywhere.

Pure functions

Always produce the same result May produce different results for the
when given the same parameters. same parameters.

Never have side effects. May have side effects.

Never alter state. May alter the global state of the
program, system, or world.

- Advantages
= Correctness of the code Is easier to verify.
- Refactor and test is possible
= Saving results of pure function invocations.

- Reordering pure function invocations or performing them on other
threads.

A PRIMEDIC"

Saves Life. Everywhere.

Pure functions

- Monads are the Haskell solution to deal with the impure world.

- A Monad
= encapsulates the impure world.
= IS a Imperative subsystem in.
= represents a computation structure.
- define the composition of computations.

- Examples:
» 1/O monad for input and output | R és
- Maybe monad for computations that can fall

- List monad for computations with zero or more valid answers
- State monad for stateful computation
- STM monad for software transactional memory

aks PRIMEDIC"

Saves Life. Everywhere.

Recursion

- Recursion is the control structure in functional programming.
« Aloop (for int i=0; i <= 0; ++1i) needs a variable i.

Fac<5>::wvalue =
=5 * Fac<4>:value
*4 * Fac<3>:value
3 * Fac<2>::wvalue
3 *2 *Fac<1>:wvalue
3

5
5*4*
5*4*
5*4*3*2*1* Fac<0>:wvalue
1

20

s Recursion combined with list processing is a powerful pattern in
functional languages.

aks PRIMEDIC"

Saves Life. Everywhere.

Recursion

Haskell:
fac 0= 1

fac n= n * fac (n-1)

C++:
template<int N>

struct Fac({

static int const value= N * Fac<N-1>::value;

Y

template <>
struct Fac<0>{

static 1nt const value = 1;

};
m) fac(5) == Fac<5>::value == 120

ahe

PRIMEDIC"

Saves Life. Everywhere.

List processing

= LISt Processing is the characteristic for functional programming:
- transforming a list into another list
= reducing a list to a value

- The functional pattern for list processing:
1. Processing the head (x) of the list
2. Recursively processing the tail (xs) of the list => Go to step 1).

mySum [] = 0

mySum (X:Xs) = X + mySum XS

mySum [1,2,3,4,5] - 15
myMap £ [] = T[]

myMap f (x:xs)= f x: myMap f xs
myMap (\x — x*x)[1,2,3]) (1,49

A PRIMEDIC"

Saves Life. Everywhere.

List processing

template<int ...> struct mySum;

template<>struct

mySum<> {
static const int wvalue= 0;

b

template<int i, int taill> struct

mySum<i,tail...>{

static const int value= i + mySum<tail...>::value;
i
int sum= mySum<1,2,3,4,5>::value; ‘ sum == 15

A PRIMEDIC"

Saves Life. Everywhere.

List processing

- The key idea behind list processing is pattern matching.

= First match in Haskell
mult n 0 = 0
mult n 1 = n

mult nm = (multn (m - 1)) + n

) nult 3 2 = (mult 3 (2 - 1)) + 3
= (mult 3 1) + 3
= 3 + 3
= 6
= Best match in C++11
template < int N1, int N2 > class Mult { .. };
template < int N1 > class Mult <N1,1> { .. };
template < int N1 > class Mult <N1,0> { .. };

A PRIMEDIC"

Saves Life. Everywhere.

Lazy Evaluation

- Evaluate only, if necessary.

- Haskell is lazy
length [2+1, 3*2, 1/0, 5-4]

- C++ Is eager

int onlyFirst(int a, int){ return a; }

onlyFirst (1,1/0); MNP

- Advantages:
= Saving time and memory usage
- Working with infinite data structures

A PRIMEDIC"

Saves Life. Everywhere.

Lazy Evaluation

- Haskell
successor 1= 1: (successor (i+1))
take 5 (successor 10) ‘ [10,11,12,13,14]
odds= takeWhile (< 1000) . filter odd . map ("2)
(1..1]= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ... Control-C
odds [1..] m) [1,9,25,...,841,961]

= Special case in C++: short circuit evaluation

if (true or (1/0)) std::cout << "short circuit evaluation in C++\n";

aks PRIMEDIC"

Saves Life. Everywhere.

I | ||
What's missing?
= List comprehension: Syntactic sugar for map and filter

» Like mathematic

{vev| ve N v pod 2 = 0 }:Mathematk

n*n | n <- [1..], n ‘mod> 2 ==0 1 :Haskell

= Python
[n for n in range(8)] ‘ :0,1,2,3,4,5,6,7]
[n*n for n in range (8)] - 0,1,4,9,16,25,36,49]
[n*n for n in range(8) if n%2 == 0] ‘ 0,4,16,36]

A PRIMEDIC"

Saves Life. Everywhere.

What's missing?

Function composition: fluent interface
- Haskell

(reverse . sort)[10,2,8,1,9,5,3,06,4,7]
=) [10,9,8,7,6,5,4,3,2,1]

1sTit (x:xs)= 1isUpper x && all isLower xs

sorTitLen= sortBy(comparing length).filter isTit . words
sorTitLen “A Sentence full of Titles ."

‘ ["AY,“"Titles"“, “Sentence"]

A PRIMEDIC"

Saves Life. Everywhere.

L
PRIMEDIC"

~Saves Life. Everywhere.

»
F

