cr-
o}

science + computing

| A Bull Group Company

Functional Programming in C++11

science + computing ag
IT-Dienstleistungen und Software fur anspruchsvolle Rechnernetze
Tubingen | Munchen | Berlin | DUsseldorf

. cre
An Overview T

| A Bull Group Company

Programming in a functional style
Why functional programming?
What is functional programming?

Characteristics of functional
programming
= first-class functions
= higher-order functions
= pure functions
= recursion
= list processing
= |lazy evaluation
= What's missing?

Seite 2

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

— R

Programming in a functional style

= Automatic type deduction with
= auto and decltype
= Support for lambda-functions
= closures
= functions as data
= Partial function application
= std::function and std::bind
= lambda-functions and auto
= Higher-order functions in the algorithms of the STL
= List manipulation with variadic templates
= Pattern matching with full and partial template specialisation
= Lazy evaluation with std::async

= Constrained templates (concepts) will be part of C++1y.
Seite 3

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . cr
Why functional programming®? i

= Standard Template Library (STL)
= more effective use with lambda-functions

accumulate (vec.begin(),vec.end(),
[] (int a,int b) {return a+b;});

* Template Programming

= recognizing functional patterns
template <int N>
struct Fac{ static int const val= N * Fac<N-1>::val; };

template <>

struct Fac<0>{ static int const val= 1; };

= Better programming style
= reasoning about side effects
" more concise

for (auto v: vec) cout << v << " " <K< endl;

Seite 4

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

What is functional programming?

* Functional programming is programming with mathematical
functions.

= Mathematical functions are functions that each time return the

same value when given the same arguments (referencial
transparency).

+ Functions are not allowed to have side effects.
= The function invocation can be replaced by the result.

= The optimizer is allowed to rearrange the function invocations

or he can perform the function invocation on a different
thread.

= The program flow will be driven by the data dependencies
and not by the sequence of instructions.

Seite 5

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

e

Characteristics of functional programming ..2%

Seite 6

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

First-class functions

lambda-
function

function '
function
J C

Seite 7

Rainer Grimm: Functional Programming in C++11

Cr»
v A

science +computing

| A Bull Group Company

= First-class functions are first-
class citizens.

- Functions are like data.

= Functions

= can be passed as arguments
to other functions.

= can be returned from other
functions.

= can be assigned to variables or
stored in a data structure.

© 2012 science + computing ag

. . . Cr-
First-class functions: dispatch table e

| A Bull Group Company

map<const char, function<double (double,double)>> tab;
tab.insert (make pair('+', [] (double a,double {return
] (double a,double

] (double a,double
1

double a,double

((

tab.insert (make pair('-"',
(({return
((

b)
b) {return
b)
b)

v Y Y W

[
tab.insert (make pair('*', [
[

tab.insert (make pair('/"', {return
cout << "3.5+4.5= " << tab['+'](3.5,4.5) << endl; // 8

cout << "3.5%4.5= " << tab['*'](3.5,4.5) << endl; /7 15.75

tab.insert (make pair('"',
[] (double a,double b) {return pow(a,b);}));

cout << "3.574.5= " << tab['~'](3.5,4.5) << endl; // 280.741

Seite 8

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . cr-
Higher-order functions e e

| A Bull Group Company

= Higher-order functions are functions that accept other functions
as argument or return them as result.

= The three classics:
= map:
Apply a function to each element

of a list.
= filter:

Remove elements from a list.
= fold:

Reduce a list to a single value by successively applying a binary
operation.

(source: http://musicantic.blogspot.de, 2012-10-16)

Seite 9

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

http://musicantic.blogspot.de/

. . cr
Higher-order functions e

| A Bull Group Company

= Each programming language supporting programming in a
functional style offers map, filter and fold.

Haskell Python C++

map map std::transform
filter filter std::remove_if
fold* reduce std::accumulate

= map, filter and fold are 3 powerful functions which are applicable in
many cases.

-~ map + reduce= MapReduce

Seite 10

Rainer Grimm: Functional Programming in C++11

© 2012 science + computing ag

. . cr
Higher-order functions e

| A Bull Group Company

= Lists and vectors:
= Haskell:

vec= [1 . . 9]

str= ["Programming","in","a","functional","style."]

= Python:
vec=range (1,10)

str=["Programming","in","a", "functional", "style."]

= C++11;
vector<int> vec{l1,2,3,4,5,6,7,8,9}

vector<string>str{"Programming","in","a","functional",
"style."}

« The results will be displayed in Haskell or Python notation.

Seite 11

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . cr
Higher-order functions e

| A Bull Group Company
* map
- Haskell:

map (\a — a"2) vec

map (\a -> length a) str

= Python:
map (lambda x : x*x , vec)
map (lambda x : len(x),str)
- C++11:

transform(vec.begin(),vec.end(),vec.begin(),
[] (i1nt 1){ return 1i*1i; });

transform(str.begin(),str.end(),back inserter (vecl),
[] (string s){ return s.length(); });

~ Results: [1,4,9,16,25,36,49,64,81]
[11,2,1,10,6]

Seite 12

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . cr
Higher-order functions e

| A Bull Group Company

= filter
= Haskell:
filter (\x-> %<3 || x>8) vec

filter (\x - isUpper (head x)) str
= Python:

filter (lambda x: x<3 or x>8 , wvec)
filter (lambda x: x[0].isupper(),str)
= C++11:

auto 1t= remove 1if (vec.begin(),vec.end(),
[] (int 1){ return !((1 < 3) or (i1 > 8)) });
)

auto 1t2= remove 1if (str.begin(),str.end(),
[] (string s){ return ! (isupper(s[(0])),; }):

= Results: [1,2,9] and [‘Programming”]

Seite 13

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . cr
Higher-order functions e

| A Bull Group Company

- fold

- Haskell:
foldl (\a b - a * b) 1 vec
foldl (\a b - a ++ ":" ++ b) "" str

= Python:
reduce (lambda a , b: a * b, vec, 1)

reduce (lambda a, b: a + b, str,"")

- C++11:

accumulate (vec.begin(),vec.end(), 1,
[] (int a, int b){ return a*b; });

accumulate (str.begin(),str.end(),string(""),
[] (string a,string b){ return at+":"+b; });

+ Results: 362800 and “:Programming:in:a:functional:style.”

Seite 14

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. cre
Pure functions e

| A Bull Group Company

= Pure versus impure functions (from the book Real World Haskell)

pure functions impure functions

Always produces the same result when May produce different results for the

given the same parameters. same parameters.
Never have side effects. May have side effects.
Never alter state. May alter the global state of the program,

system, or world.

= Pure functions are isolated. The program is easier to
= reason about.
= refactor and test.

= Great opportunity for optimization
= Saving results of pure function invocations

= Reordering pure function invocations or performing them on other

threads
Seite 15

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

Pure functions

« Monads are the Haskell solution to deal with the impure world.

- A Monad
= encapsulates the impure world in pure Haskell.
= IS a imperative subsystem in Haskell.
= Is a structure which represents computation.
= has to define the composition of computations.

- Examples:
= 1/0 monad for dealing with input and output
= Maybe monad for computations that can fail
= List monad for computations with zero or more valid answers
= State monad for representing stateful computation
= STM monad for software transactional memory

Seite 16

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

e

. Cr-
Recursion v

science +computing

| A Bull Group Company

Fac<5>:value =
=5 * Fac<4>::value
=5*4 *Fac<3>:value
=5%4*3*Fac<2>:wvalue
=5%4*3%*2 *Fac<1=:value
5*4*3*2*1* Fac<0>:wvalue
120

= Loops:
= Recursion is the control structure.
= Aloop (for int i=0; i <= 0; ++i) needs a variable i.

= Mutable variables are not known in functional languages like
Haskell.

= Recursion combined with list processing is a powerful pattern in
functional languages.

Seite 17

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

e N

. cre
Recursion e

| A Bull Group Company

- Haskell:

fac 0=1

fac n= n * fac (n-1)
= C++:

template<int N>
struct Fac{

static int const value= N * Fac<N-1>::value;

s

template <>
struct Fac<0>{
static 1nt const value = 1;
I
=~ Result: fac(5) == Fac<5>::value == 120

Seite 18

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . C™-
List processing s

| A Bull Group Compa

= LISt Processing is the characteristic for functional programming:
= transforming a list into another list
= reducing a list to a value
= The functional pattern for list processing:
1)Processing the head (x) of the list
2)Recursively processing the tail (xs) of the list => Go to step 1).

- Examples:
mySum [] = 0
mySum (x:xs) = X + mySum Xs
mySum [1,2,3,4,5] /[15

myMap £ [] = []
myMap f (x:xs)= f x: myMap f xs

myMap (\x — x*x)[1,2,3] //[1,439]

Seite 19

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing

ny

ag

Cr-

List processing e
| A Bull Group Company
template<int ...> struct mySum;
template<>struct
mySum<> {

static const int value= 0;

s

template<int i, int ... tail> struct
mySum<i,tail...>{
static const int value= i1 + mySum<tail...>::value;
i
int sum= mySum<1,2,3,4,5>::value; // sum == 15

= You do not really want to implement nymap with variadic templates.
(http://www.linux-magazin.de/Heft-Abo/Ausgaben/2011/01/C/%280ffset%29/2)

Seite 20

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. . C™-
List processing s

| A Bull Group Company

= The key idea behind list processing is pattern matching.

= First match in Haskell
mult n 0 = 0

mult n 1 = n
mult nm = (multn (m - 1)) + n
- Example:

mult 3 2 = (mult 3 (2 - 1)) + 3
= (mult 3 1) + 3
= 3 + 3
= 06
= Best match in C++11
template < int N1, int N2 > class Mult { .. };
template < int N1 > class Mult <N1,1> { .. };
template < int N1 > class Mult <N1,0> { .. };

Seite 21

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

. cre
Lazy Evaluation e e

| A Bull Group Company

= Lazy evaluation (non-strict evaluation) evaluates the expression
only if needed.

- Haskell is lazy, as the following works
length [2+1, 3*2, 1/0, 5-4]

- C++ is eager, but the following works

template <typename... Args>
vold mySize (Args... args) {
cout << sizeof... (args) << endl;

}

mySize ("Rainer",1/0);
= Advantages:
= Saving time and memory usage
= Working with infinite data structures

Seite 22

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

Cr-

Lazy Evaluation science+fmpu$
| A Bull Group Company
- Examples:
successor 1= 1i: (successor (i+1))
take 5 (successor 10) //[10,11,12,13,14]

odds= takeWhile (< 1000) . filter odd . map ("2)
(1..]= 11,2,3,4,5,06,7,8,9,10,11,12,13,14,15 ... Control -C

odds [1..] //11,9,25, ..., 841,961]

= Special case: short circuit evaluation

if (true or (1/0))cout << "short circuit evaluation in C++\n";

Seite 23

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

, L Cr-
What's missing? s

= List comprehension:
= Syntactic sugar of the sweetest kind with map and filter
« Examples:
[(s,len(s)) for s in ["Only","for"1] # [('Only", 4), (for', 3)]
[i*i for i in range(11l) if i%2 == 0] #[0,4,16,36,64,100]
= Function composition:
= Programming with LEGO bricks
 Examples:
(reverse . sort)[10,2,8,1,9,5,3,6,4,71--[10,9,8,7,6,5,4,3,2,1]

theLongestTitle= head . reverse . sortBy(comparing length)
filter 1sTitle

theLongestTitle words ("A Sentence Full Of Titles.")

-+ Result: "Sentence"
Seite 24

Rainer Grimm: Functional Programming in C++11 © 2012 science + computing ag

Functional Programming in C++11 Sc :

science + computing

| A Bull Group Company

Vielen Dank fur Ihre Aufmerksamkeit.

Rainer Grimm
science + computing ag
www.science-computing.de

phone +49 7071 9457-253
r.grimm@science-computing.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Schlussfolie

