
Concurrency

Patterns

Rainer Grimm

Training, Mentoring, and

Technology Consulting

Definition

"Each pattern is a three-part rule, which expresses a

relation between a certain context, a problem, and a

solution." (Christopher Alexander)

Three Types of Patterns

▪ Architecture pattern

▪ Fundamental structure

▪ Software system

▪ Design pattern

▪ Interplay of components

▪ Focus on a subsystem

▪ Idiome

▪ Implementation of an architecture or design pattern in a

programming language.

Components of a Pattern

1. Name

2. Also known as

3. Summary

4. Motivation

5. Context

6. Interaction

7. Solution

8. Example

9. Consequenses

10. Related pattern

11. Known usages

Concurrency Patterns

▪ Pattern-Oriented Software Architecture (Volume 2 and 4)

▪ Concurrent Programming in Java

https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2
https://www.google.de/books/edition/Concurrent_Programming_in_Java/-x1S4neCSOYC?hl=en&gbpv=0
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2

Concurrency Patterns

Synchronization
Patterns

Dealing with Sharing

▪ Copied Value

▪ Thread-Specific Storage

▪ Future

Dealing with Mutation

▪ Scoped Locking

▪ Strategized Locking

▪ Thread-Safe Interface

▪ Guarded Suspension

Concurrent
Architecture

Active Object

Monitor
Object

Concurrency Patterns

Synchronization
Patterns

Dealing with Sharing

▪ Copied Value

▪ Thread-Specific Storage

▪ Future

Dealing with Mutation

▪ Scoped Locking

▪ Strategized Locking

▪ Thread-Safe Interface

▪ Guarded Suspension

Concurrent
Architecture

Active Object

Monitor
Object

Copied Value

There is no need to synchronize when a thread takes its

arguments by copy and not by reference.

Data races or lifetime issues are not possible.

copiedValueDataRace.cpp

https://godbolt.org/z/Wr7a4Wj8b

Thread-Specific Storage

Thread-specific storage enables global state within a

thread.

▪ Typical use-cases:

▪ Porting a single-thread to multithreaded program

▪ Compute thread-local and share the results

▪ Thread-local logger

threadLocalSummation.cpp

https://wandbox.org/permlink/Vu1WDGCr4oRpuisB

Future

A future is a non-mutable placeholder for a value, which is

set by a promise.

auto future = std::async([]{ return "LazyOrEager"; });

future.get();

Future: receiver

get

Promise: sender

set

channel

Concurrency Patterns

Synchronization
Patterns

Dealing with Sharing

▪ Copied Value

▪ Thread-Specific Storage

▪ Future

Dealing with Mutation

▪ Scoped Locking

▪ Strategized Locking

▪ Thread-Safe Interface

▪ Guarded Suspension

Concurrent
Architecture

Active Object

Monitor
Object

Scoped Locking

Scoped Locking is RAII applied to locking.

▪ Idea:

▪ Bind the acquiring (constructor) and the releasing (destructor) of

the resource to the lifetime of an object.

▪ The lifetime of the object is bound.

▪ The C++ run time is responsible for invoking the destructor and

releasing the resource.

▪ C++ Implementation

▪ std::lock_guard and std::scoped_lock

▪ std::unique_lock and std::shared_lock

scopedLock.cpp

https://godbolt.org/z/4o7avYvfx

Strategized Locking

Strategized Locking

▪ Enables it to use various locking strategies as replaceable

components.

▪ Is the application of the strategy pattern to locking.

▪ Idea:

▪ You want to use your library in various domains.

▪ Depending on the domain, you want to use exclusive locking,

shared locking, or no locking.

▪ Configure your locking strategy at compile time or run time.

Strategized Locking

Advantages:

▪ Run-time polymorphism

▪ Enables it to change the locking

strategy at runtime.

▪ Compile-time polymorphism

▪ No cost at runtime

▪ Flatter object hierarchies

Disadvantages:

▪ Run-time polymorphism

▪ Needs a pointer indirection.

▪ Compile-time polymorphism

▪ Produces in the error case a

quite challenging to understand

error message (when no

concepts are used).

strategizedLockingRuntime.cpp

strategizedLockingCompileTimeWithConcepts.cpp

https://godbolt.org/z/1oM5n97W8
https://godbolt.org/z/r1h64f4Yz

Thread-Save Interface

The thread-save interface extends the critical region to an

object.

▪ Antipattern: Each member function uses a lock internally.

▪ The performance of the system goes down.

▪ Deadlocks appear when two member functions call each other.

Thread-Save Interface

A deadlock due to entangled calls.

struct Critical{

void method1(){

std::lock_guard(mut);

method2();

. . .

}

void method2(){

std::lock_guard(mut);

. . .

}

std::mutex mut;

}

int main(){

Critical crit;

crit.method1();

}

Thread-Save Interface

▪ Solutions:

▪ All interface member functions (public) use a lock.

▪ All implementation member functions (protected and

private) must not use a lock.

▪ The interface member functions call only implementation member

functions.

threadSafeInterface.cpp

https://godbolt.org/z/4eWaTMj4W

Guarded Suspension

A guarded suspension consists of a lock and a condition.

The condition has to be fulfilled by the calling thread.

▪ The calling thread will put itself to sleep if the condition is not

meet.

▪ The calling thread uses a lock when it checks the condition.

▪ The lock protects the calling thread from a data race or deadlock.

Guarded Suspension

▪ Guarded suspension enables thread synchronization. It

is available in many variations.

▪ The waiting thread is notified about the state change or asks for

the state change.

▪ Push principle: condition variables, future/promise pairs, atomics

(C++20), or semaphores (C++20)

▪ Pull principle: not natively supported in C++

▪ The waiting thread waits with or without a time limit.

▪ Condition variables, or future/promise pairs

▪ The notification is sent to one or all waiting threads.

▪ Shared futures, condition variables, atomics (C++20), or

semaphores (C++20)

bossWorker.cpp

https://godbolt.org/z/qPW5xq5qE

Concurrency Patterns

Synchronization
Patterns

Dealing with Sharing

▪ Copied Value

▪ Thread-Specific Storage

▪ Future

Dealing with Mutation

▪ Scoped Locking

▪ Strategized Locking

▪ Thread-Safe Interface

▪ Guarded Suspension

Concurrent
Architecture

Active Object

Monitor
Object

Active Object

The active object pattern separates the method execution

from the method invocation.

▪ Each object owns its own thread.

▪ Each method invocation is stored in an activation list.

▪ A scheduler triggers the method execution.

Active Object

Proxy:

▪ Proxy for the member functions on the active object

▪ Triggers the construction of a request object which goes to the

activation list and returns a future.

▪ It runs in the client thread.

Method Request

▪ Includes all context information to be executed later.

Activation List:

▪ Has the pending requests objects.

▪ Decouples the client from the Active Object thread.

Scheduler:

▪ Runs in the thread of the Active Object.

▪ Decides with request from the Activation List is executes.

Active Object

▪ Servant:

▪ Implements the member functions of the active objects.

▪ Supports the interface of the Proxy.

▪ Future:

▪ Is created by the Proxy.

▪ Is only necessary if the request objects returns a result.

▪ The client uses the future to get the result of the request object.

Active Object

Dynamic Behavior

1. Request construction and scheduling:

▪ The client invokes the method on the proxy.

▪ The proxy creates a request and passes it to the scheduler.

▪ The scheduler enqueues the request on the activation list

and returns a future to the client if the request returns

something.

2. Member function execution

▪ The scheduler determines which request becomes runnable.

▪ It removes the request from the activation list and dispatches

it to the servant.

3. Completion:

▪ Stores eventually the result of the request object in the future.

▪ Destructs the request object and the future if the client has

the result.

Active Object

Active Object

Advantages:

▪ Only the access to the activation

list has to be synchronized

▪ Clear separation of client and

server

▪ Improved throughput due to the

asynchronous execution

▪ The scheduler can use various

execution policies.

Disadvantages:

▪ If the member function execution

is too fine-grained, the indirection

may cause significant overhead.

▪ The asynchronous member

function execution and the various

execution strategies make the

system quite difficult to debug.

activeObject.cpp

https://godbolt.org/z/hsarK8sc7

Concurrency Patterns

Synchronization
Patterns

Dealing with Sharing

▪ Copied Value

▪ Thread-Specific Storage

▪ Future

Dealing with Mutation

▪ Scoped Locking

▪ Strategized Locking

▪ Thread-Safe Interface

▪ Guarded Suspension

Concurrent
Architecture

Active Object

Monitor
Object

Monitor Object

The monitor object synchronizes the access to an object so

that at most one member function can run at any moment in

time.

▪ Each object has a monitor lock and a monitor condition.

▪ The monitor lock guarantees that only one client can

execute a member function of the object.

▪ The monitor condition notifies the waiting clients.

Monitor Object

Monitor Object

Monitor Object:

▪ Support member functions, which can run in the thread of the client.

Synchronized Methods:

▪ Interface member functions of the monitor object.

▪ At most, one member function can run at any point in time

▪ The member functions should apply the thread-safe interface pattern.

Monitor Lock:

▪ Each monitor object has a monitor lock.

▪ Guarantees exclusive access to the member functions.

Monitor Condition:

▪ Allows various threads to store their member function invocation.

▪ When the current thread is done with its member function execution,

the next thread is awoken.

Monitor Object

Advantages:

▪ The synchronization is

encapsulated in the

implementation.

▪ The member function execution

is automatically stored and

performed.

▪ The monitor object is a simple

scheduler.

Disadvantages:

▪ The synchronization mechanism

and the functionality are strongly

coupled and can, therefore, not

easily be changed.

▪ When the synchronized member

functions invoke an additional

member function of the monitor

object, a deadlock may happen.

monitorObject.cpp

monitorObjectCpp20.cpp

https://godbolt.org/z/bz8bnPM3E
https://godbolt.org/z/eTqeqM3K6
https://godbolt.org/z/E8n3f1shW

www.ModernesCpp.com

Rainer Grimm

Training, Mentoring, and

Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

