
Concurrency 

Patterns

Rainer Grimm

Training, Mentoring, and 

Technology Consulting



Definition

"Each pattern is a three-part rule, which expresses a 

relation between a certain context, a problem, and a 

solution." (Christopher Alexander)



Three Types of Patterns

▪ Architecture pattern

▪ Fundamental structure

▪ Software system

▪ Design pattern

▪ Interplay of components

▪ Focus on a subsystem

▪ Idiome

▪ Implementation of an architecture or design pattern in a 

programming language.



Components of a Pattern

1. Name 

2. Also known as

3. Summary

4. Motivation 

5. Context

6. Interaction

7. Solution

8. Example

9. Consequenses

10. Related pattern

11. Known usages



Concurrency Patterns

▪ Pattern-Oriented Software Architecture (Volume 2 and 4)

▪ Concurrent Programming  in Java 

https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2
https://www.google.de/books/edition/Concurrent_Programming_in_Java/-x1S4neCSOYC?hl=en&gbpv=0
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2
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Copied Value

There is no need to synchronize when a thread takes its 

arguments by copy and not by reference.

Data races or lifetime issues are not possible.

copiedValueDataRace.cpp

https://godbolt.org/z/Wr7a4Wj8b


Thread-Specific Storage

Thread-specific storage enables global state within a 

thread.

▪ Typical use-cases:

▪ Porting a single-thread to multithreaded program

▪ Compute thread-local and share the results

▪ Thread-local logger

threadLocalSummation.cpp

https://wandbox.org/permlink/Vu1WDGCr4oRpuisB


Future

A future is a non-mutable placeholder for a value, which is 

set by a promise. 

auto future = std::async([]{ return "LazyOrEager"; });

future.get();

Future: receiver

get

Promise: sender

set

channel
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Scoped Locking

Scoped Locking is RAII applied to locking.

▪ Idea:

▪ Bind the acquiring (constructor) and the releasing (destructor) of 

the resource to the lifetime of an object.

▪ The lifetime of the object is bound.

▪ The C++ run time is responsible for invoking the destructor and 

releasing the resource.

▪ C++ Implementation

▪ std::lock_guard and std::scoped_lock

▪ std::unique_lock and std::shared_lock

scopedLock.cpp

https://godbolt.org/z/4o7avYvfx


Strategized Locking

Strategized Locking 

▪ Enables it to use various locking strategies as replaceable 

components.

▪ Is the application of the strategy pattern to locking.

▪ Idea:

▪ You want to use your library in various domains.

▪ Depending on the domain, you want to use exclusive locking, 

shared locking, or no locking.

▪ Configure your locking strategy at compile time or run time.



Strategized Locking

Advantages:

▪ Run-time polymorphism

▪ Enables it to change the locking 

strategy at runtime.

▪ Compile-time polymorphism

▪ No cost at runtime

▪ Flatter object hierarchies

Disadvantages:

▪ Run-time polymorphism

▪ Needs a pointer indirection.

▪ Compile-time polymorphism

▪ Produces in the error case a 

quite challenging to understand 

error message (when no 

concepts are used).

strategizedLockingRuntime.cpp

strategizedLockingCompileTimeWithConcepts.cpp

https://godbolt.org/z/1oM5n97W8
https://godbolt.org/z/r1h64f4Yz


Thread-Save Interface

The thread-save interface extends the critical region to an 

object.

▪ Antipattern: Each member function uses a lock internally.

▪ The performance of the system goes down.

▪ Deadlocks appear when two member functions call each other.



Thread-Save Interface

A deadlock due to entangled calls.

struct Critical{

void method1(){

std::lock_guard(mut);

method2();

. . .

}

void method2(){

std::lock_guard(mut);

. . .

}

std::mutex mut;

}

int main(){

Critical crit;

crit.method1();

}



Thread-Save Interface

▪ Solutions:

▪ All interface member functions (public) use a lock.

▪ All implementation member functions (protected and 

private) must not use a lock.

▪ The interface member functions call only implementation member 

functions.

threadSafeInterface.cpp

https://godbolt.org/z/4eWaTMj4W


Guarded Suspension

A guarded suspension consists of a lock and a condition. 

The condition has to be fulfilled by the calling thread.

▪ The calling thread will put itself to sleep if the condition is not 

meet.

▪ The calling thread uses a lock when it checks the condition.

▪ The lock protects the calling thread from a data race or deadlock.



Guarded Suspension

▪ Guarded suspension enables thread synchronization. It 

is available in many variations.

▪ The waiting thread is notified about the state change or asks for 

the state change.       

▪ Push principle: condition variables, future/promise pairs, atomics 

(C++20), or semaphores (C++20)

▪ Pull principle: not natively supported in C++

▪ The waiting thread waits with or without a time limit. 

▪ Condition variables, or future/promise pairs

▪ The notification is sent to one or all waiting threads. 

▪ Shared futures, condition variables, atomics (C++20), or 

semaphores (C++20)

bossWorker.cpp

https://godbolt.org/z/qPW5xq5qE
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Active Object

The active object pattern separates the method execution 

from the method invocation.

▪ Each object owns its own thread.

▪ Each method invocation is stored in an activation list.

▪ A scheduler triggers the method execution.



Active Object

Proxy: 

▪ Proxy for the member functions on the active object

▪ Triggers the construction of a request object which goes to the 

activation list and returns a future.

▪ It runs in the client thread.

Method Request

▪ Includes all context information to be executed later.

Activation List: 

▪ Has the pending requests objects.

▪ Decouples the client from the Active Object thread. 

Scheduler:

▪ Runs in the thread of the Active Object.

▪ Decides with request from the Activation List is executes. 



Active Object

▪ Servant: 

▪ Implements the member functions of the active objects.

▪ Supports the interface of the Proxy.

▪ Future: 

▪ Is created by the Proxy.

▪ Is only necessary if the request objects returns a result.

▪ The client uses the future to get the result of the request object.



Active Object

Dynamic Behavior

1. Request construction and scheduling: 

▪ The client invokes the method on the proxy. 

▪ The proxy creates a request and passes it to the scheduler.

▪ The scheduler enqueues the request on the activation list 

and returns a future to the client if the request returns 

something.

2. Member function execution

▪ The scheduler determines which request becomes runnable.

▪ It removes the request from the activation list and dispatches 

it to the servant.

3. Completion:

▪ Stores eventually the result of the request object in the future.

▪ Destructs the request object and the future if the client has 

the result.



Active Object



Active Object

Advantages:

▪ Only the access to the activation 

list has to be synchronized

▪ Clear separation of client and 

server

▪ Improved throughput due to the 

asynchronous execution

▪ The scheduler can use various 

execution policies.

Disadvantages:

▪ If the member function execution 

is too fine-grained, the indirection 

may cause significant overhead.

▪ The asynchronous member 

function execution and the various 

execution strategies make the 

system quite difficult to debug.

activeObject.cpp

https://godbolt.org/z/hsarK8sc7
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Monitor Object

The monitor object synchronizes the access to an object so 

that at most one member function can run at any moment in 

time. 

▪ Each object has a monitor lock and a monitor condition.

▪ The monitor lock guarantees that only one client can 

execute a member function of the object.

▪ The monitor condition notifies the waiting clients.



Monitor Object



Monitor Object

Monitor Object:

▪ Support member functions, which can run in the thread of the client.

Synchronized Methods:

▪ Interface member functions of the monitor object.

▪ At most, one member function can run at any point in time

▪ The member functions should apply the thread-safe interface pattern.

Monitor Lock:

▪ Each monitor object has a monitor lock.

▪ Guarantees exclusive access to the member functions.

Monitor Condition:

▪ Allows various threads to store their member function invocation.

▪ When the current thread is done with its member function execution, 

the next thread is awoken.



Monitor Object

Advantages:

▪ The synchronization is 

encapsulated in the 

implementation.

▪ The member function execution 

is automatically stored and 

performed.

▪ The monitor object is a simple 

scheduler.

Disadvantages:

▪ The synchronization mechanism 

and the functionality are strongly 

coupled and can, therefore, not 

easily be changed.

▪ When the synchronized member 

functions invoke an additional 

member function of the monitor 

object, a deadlock may happen.  

monitorObject.cpp

monitorObjectCpp20.cpp

https://godbolt.org/z/bz8bnPM3E
https://godbolt.org/z/eTqeqM3K6
https://godbolt.org/z/E8n3f1shW
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