
C++20
The Hidden Pearls

Rainer Grimm

Training, Coaching, and

Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.net/

C++20

C++20 – The Big Four

C++20 - Core Language

Three-way Comparison Operator

The three-way comparison operator <=> determines for two

values A and B, whether A < B, A == B or A > B applies.

▪ The three-way comparison operator

▪ Is also called spaceship operator.

▪ Can be implemented or defaulted with = default.

▪ The comparison operator created by the compiler

▪ Needs the header file <compare>.

▪ Is implicit constexpr and noexcept.

▪ Compares lexicographically except the == and != operator.

▪ All base classes from left to right

▪ Non-static members in their declaration order

Three-way Comparison Operator

▪ Special features

▪ The compiler generates comparison expressions from the three-

way comparison order:

a < b (a <=> b) < 0

▪ The three-way comparison operator is symmetric.

a < b (a <=> b) < 0 0 < (b <=> a)

▪ If the data type already has comparison operators, they have

higher priority than the three-way comparison operator.

threeWayComparisonWithInt.cpp

https://godbolt.org/z/Eeb68W3nT

Designated Initialization

Designated initializers are an extension of aggregate

initialization.

▪ Aggregate

▪ Array

▪ Class type (class, struct, union)

▪ public members

▪ No user-defined constructors

▪ Aggregate Initialization

▪ Can be initialized directly with an initialization list.

▪ The order of the arguments must match the declaration order of

the members.

Designated Initialization

Point {

int x;

int y;

};

Designated Initializer

▪ Allows to call the non-static members directly by name using an
initializer list.

▪ Point p = {.x = 1, .y = 2};

▪ Members can also have an in-class default value.

▪ If the initializer is missing, the default value is used (exception
union).

▪ Narrowing conversion is detected ERROR

designatedInitializerDefaults.cpp

https://godbolt.org/z/xbGK7fKcE

consteval

consteval generates an immediate function.

▪ Every call of an immediate function generates a constant

expression that is executed at compile time.

consteval

▪ Cannot be applied to destructors or functions that allocate or

deallocate.

▪ Has the same requirements such as a constexpr function.

▪ Implies that the function is inline.

consteval int sqr(int n) {

return n * n;

}

constexpr int r = sqr(100); // OK

int x = 100;

int r2 = sqr(x); // Error

constinit

constinit guarantees that a variable with static storage

duration is initialized at compile time.

▪ Global objects, or objects declared with static or extern,

have static storage duration.

▪ Objects with a static storage duration are allocated at the

program start and deallocated at its end.

constinit

▪ Avoids the static initialization order fiasco.

▪ Variables are not constant.

https://www.modernescpp.com/index.php/c-20-static-initialization-order-fiasco

Template and Lambda Improvements

▪ New non-type template-parameters

▪ Floating-point numbers

▪ Classes with constexpr constructor

▪ Template Lambdas allow defining a lambda expression

that can only be used for certain types.

auto foo = []<typename T>(const std::vector<T>& vec) {

// do vector specific stuff

};

A concept can be used instead of a type parameter T.

templateLambda.cpp

https://godbolt.org/z/7ddrjf3ro

C++20 - Library

std::span

std:span stands for an object that refers to a continuous

sequence of objects.

▪ std::span

▪ is never an owner.

▪ The referenced area can be an array, a pointer with a length, or a
std::vector.

▪ A typical implementation has a pointer to the first element and its

length.

▪ Allows the partially access to the continuous sequence of

elements.

A std::span knows its length.

printSpan.cpp

https://godbolt.org/z/9nGv1sGMq

Container Improvements

std::string and std::vector can be created and

modified at compile time.

▪ The constructors of std::string, and std::vector

constructors and member functions are constexpr.

▪ The algorithms of the Standard Template Library are
declared constexpr.

If a function is declared as constexpr, it has the potential to run

at compile time. !

constexprVector.cpp

https://godbolt.org/z/YbqnzKTE3

Container Improvements

std::erase and std::erase_if enable the uniform

deletion of the elements of a container.

▪ std::erase(container, value):

▪ Removes all elements with the value from the container.

▪ std::erase_if(container, predicate):

▪ Removes all elements from the container that fulfil the

predicate .

Both algorithms operate directly on the container.!

eraseUpper.cpp

https://godbolt.org/z/651qdnfxh

Arithmetic Utilities

The comparison of signed and unsigned integers often

does not yield the expected result.

▪ The std::cmp_*-functions perform a secure comparison.

It causes a compile time error if an argument is not an integer.

Compare Function Meaning

std::cmp_equal ==

std::cmp_not_equal !=

std::cmp_less <

std::cmp_less_equal <=

std::cmp_greater >

std::cmp_greater_equal >=

safeComparison.cpp

https://godbolt.org/z/e6vbaTEfc

Arithmetic Utilities

C++20 supports important mathematical constants.

▪ Need the header file <numbers>

▪ Are defined in the namespace std::numbers

▪ The constants have the data type double.

Constant Meaning

e 𝑒

log2e 𝑙𝑜𝑔2𝑒

log10e 𝑙𝑜𝑔10𝑒

pi 𝜋

inv_pi 1

𝜋

inv_sqrtpi 1

𝜋

Constant Meaning

ln2 𝑙𝑛2

ln10 𝑙𝑛10

sqrt2 2

sqrt3 3

inv_sqrt3 1

3

egamma Euler-Mascheroni constant

phi
ϕ (

1+ 5

2
)

Calendar and Time Zones

The chrono library is extended by additional clocks, time of

day, a calendar, and time zones.

▪ New Clocks
▪ std::chrono::utc_clock

▪ std::chrono::tai_clock

▪ std::chrono::gsp_clock

▪ std::chrono::file_clock

▪ std::chrono::local_clock

▪ Time of Day:

▪ Time since midnight in the format hours:minutes:seconds.

Calendar and Time Zones

▪ Calendar:

▪ Data types representing a year, a month, a weekday, and the n-th

day of the week.

▪ Data types can be combined to more complex data types.

▪ The "/" operator allows easy handling of time points.

▪ C++ has two new literals: d for a day and y for a year.

▪ Time zones:

▪ Display dates in different time zones.

timeOfDay.cpp

cuteSyntax.cpp

localTime.cpp

onlineClass.cpp

Formatting Library

The formatting library offers a secure and expandable
alternative to the printf family and extends the I/O streams.

The formatting library requires header file <format>.

The format specifications follow the Python syntax.

▪ The format specification allows to

▪ Specify fill letters and text alignment.

▪ Set the sign for numbers.

▪ Specify the width and precision of numbers.

▪ Specify the data type.

Formatting Library

▪ std::format

▪ Returns the formatted string.

▪ std::format_to

▪ Writes the formatted output using an output iterator.

▪ std::format_to_n

▪ Writes a maximum of n characters of the formatted output using

an output iterator.

All three functions follow the same syntax.

Formatting Library

Syntax: std::format(FormatString, Arguments)

std::format("{1} {0}!", "world", "Hello");

▪ The FormatString consists of

▪ Characters: are not changed (exception { and })

▪ Escape sequences: {{ and }} become { and }

▪ Replacement fields:

▪ Introductory character: {

▪ Argument-ID: optional, followed by a format specifier

▪ Colon: optional; introduces the format specifier

▪ End character: }

Formatting Library

The format specifier std::formatter provides formatting

rules for data types.

▪ Elementary data types and std::string:

▪ Standard format specification based on Python’s format specification

▪ Chrono data types:

▪ chrono format specification

▪ Further data types:

▪ User-defined format specification

formatArgumentID.cpp

formatVector.cpp

C++20 - Concurrency

Atomics

std::atomic offers specializations for float, double

and long double.

▪ std::atomic and std::atomic_flag

▪ Allow synchronization of threads

▪ atom.notify_one(): Notifies one waiting operation

▪ atom.notify_all(): Notifies all waiting operations

▪ atom.wait(val): Waiting for a notification and blocks as long as

atom == val holds

▪ The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/4rbKb8Yb9

C++11 has std::shared_ptr for shared ownership.

▪ General rule: use smart pointer

▪ But:

▪ The handling of the control block is thread-safe.

▪ Access to the resource is not thread-safe.

▪ Solution:
▪ std::atomic_shared_ptr

▪ std::atomic_weak_ptr

Atomics

Semaphores

Semaphores are synchronization mechanisms to control

access to a shared variable.

A semaphore is initialized with a counter greater than 0

▪ Requesting the semaphore decrements the counter

▪ Releasing the semaphores increments the counter

▪ A requesting thread is blocked if the counter is 0.

▪ C++20 support two semaphores.
▪ std::counting_semaphore

▪ std::binary_semaphore (std::counting_semaphore<1>)

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/Yz4h8qexq

A thread waits at a synchronization point until the counter

becomes zero.

▪ latch is useful for managing one task by multiple

threads.

Latches and Barriers

Member Function Description

lat.count_down(upd = 1) Atomically decrements the counter by upd without
blocking the caller.

lat.try_wait() Returns true if counter == 0.

lat.wait() Returns immediately if counter == 0. If not blocks
until counter == 0.

lat.arrive_and_wait(upd = 1) Equivalent to count_down(upd); wait();

▪ barrier is helpful for managing repeated tasks by

multiple threads.

▪ The constructor gets a callable.

▪ In the completion phase, the callabe is executed by an arbitrary thread.

Latches and Barriers

Member Function Description

bar.arrive(upd) Atomically decrements counter by upd.

bar.wait() Blocks at the synchronization point until the completion step
is done.

bar.arrive_and_wait() Equivalent to wait(arrive())

bar.arrive_and_drop() Decrements the counter for the current and the subsequent
phase by one.

workers.cpp

https://godbolt.org/z/asjEKMdch

Cooperative Interruption

Each running entity can be cooperative interrupted.

▪ std::jthread and std::condition_variable_any

support an explicit interface for cooperative interruption.

Receiver (std::stop_token stoken)

Member Function Description

stoken.stop_possible() Returns true if stoken has an associated
stop state.

stoken.stop_requested() true if request_stop() was called on the
associated std::stop_source src,
otherwise false.

Cooperative Interruption

Sender (std::stop_source)

Member Function Description

src.get_token() If stop_possible(), returns a stop_token for
the associated stop state.
Otherwise, returns a default-constructed (empty)
stop_token.

src.stop_possible() true if src can be requested to stop.

src.stop_requested() true if stop_possible() and
request_stop() was called by one of the
owners.

src.request_stop() Calls a stop request if stop_possible() and
!stop_requested(). Otherwise, the call has no
effect.

interruptJthread.cpp

https://godbolt.org/z/1q3f6rzKr

std::jthread

std::jthread joines automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};

std::cout << "t.joinable(): " << t.joinable();

C++20 – The Big Four

C++20

▪ Modernes C++ Blog

▪ C++20: Get the Details (50 %

off until Sunday)

https://www.modernescpp.com/index.php/category/c-20
https://leanpub.com/c20/c/xYM5rCkz5oa8

www.ModernesCpp.com

Rainer Grimm

Training, Coaching, and

Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

