Concurrency Patterns

RAINER GRIMM

4%,
@ Cppcon %I]] AN



o —

Definition

"Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution." (Christopher Alexander)




Three Types of Patterns

= Architecture pattern
= Fundamental structure
= Software system

= Design pattern
= Interplay of components
= Focus on a subsystem

= |diome

= |Implementation of an architecture or design pattern in a concrete
programming language.




Components of a Pattern

Name

Also known as
Summary
Motivation
Context
Interaction
Solution
Example
Consequenses
10. Related pattern
11. Known usages

© 0 NOo bk wWwhPE




o

Concurrency Patterns

= Pattern-Oriented Software Architecture (Volume 2 and 4)

PATTERN-ORIENTED

SOFTWARE
ARCHITECTURE
A Pattern Language for
PATTERN-ORIENTED Distributed Computing
SOFTWARE 1
ARCHITECTURE m

Patterns for Concurrent
and Networked Objects

Frank Buschmann
Kevlin Heaney
Douglas C. Schmide

Concurrent
Programming in Java"
Second Edition

Design Principles and Patterns

= Concurrent Programming in Java

@Sun



https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2
https://www.google.de/books/edition/Concurrent_Programming_in_Java/-x1S4neCSOYC?hl=en&gbpv=0
https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2

o

Concurrency Patterns

Synchronization

Patterns

/Dealing with Sharing

= Copied Value
| = Thread-Specific Storage
= Future

-

/Dealing with Mutation

= Scoped Locking

| = Strategized Locking

= Thread-Safe Interface
= Guarded Suspension

-

Concurrent

Architecture

Active Object

Monitor
Object

Reactor




o

Concurrency Patterns

Synchronization

Patterns

/Dealing with Sharing

= Copied Value
» Thread-Specific Storage
= Future

=

-

/Dealing with Mutation

= Scoped Locking

| = Strategized Locking

» Thread-Safe Interface
= Guarded Suspension

-

Concurrent

Architecture

Active Object

Monitor
Object

Reactor




o —

Copied Value

There is no need to synchronize when a thread takes its
arguments by copy and not by reference.

m) Data races or lifetime issues are not possible.

copiedValueDataRace.cpp



https://godbolt.org/z/MWxrPdjM3

Thread-Specific Storage

Thread-specific storage enables global state within a
thread.

» Typical use-cases:

» Porting a single-thread to multithreaded program
= Compute thread-local and share the results

= Thread-local logger

threadLocalSummation.cpp



https://wandbox.org/permlink/Awbz4PJeSsb2Y7nm

o —

Future

A future is a non-mutable placeholder for a value, which is
set by a promise.

auto future = std::async([]{ return "LazyOrEager"; });
future.get () ;
Promise: sender Future: receiver
set get




o

Concurrency Patterns

Synchronization

Patterns

/Dealing with Sharing

= Copied Value
= Thread-Specific Storage
= Future

-

-

/Dealing with Mutation

= Scoped Locking

| = Strategized Locking

* Thread-Safe Interface
= Guarded Suspension

-

Concurrent

Architecture

Active Object

Monitor
Object

Reactor




o —

Scoped Locking

Scoped Locking is RAII applied to locking.

= |dea:

* Bind the acquiring (constructor) and the releasing (destructor) of
the resource to the lifetime of an object.

= The lifetime of the object is bound.

= The C++ run time is responsible for invoking the destructor and
releasing the resource.

= C++ Implementation
= std::lock guard andstd::scoped lock
= std::unique lock and std::shared lock

scopedLock. cpp



https://godbolt.org/z/esYnrPocs

Strategized Locking

Strategized Locking

= Enables it to use various locking strategies as replaceable
components.

» |s the application of the strategy pattern to locking.

= |dea:

* You want to use your library in various domains.

= Depending on the domain, you want to use exclusive locking,
shared locking, or no locking.

= Configure your locking strategy at compile time or run time.




o —

Strategized Locking

Advantages: Disadvantages:
* Run-time polymorphism * Run-time polymorphism
= Enables it to change the locking = Needs a pointer indirection.

strategy during run time.

= Compile-time polymorphism = Compile-time polymorphism
= No cost a.t run t.|me | = Produces in the error case a
" Flatter object hierarchies quite challenging to understand

error message (when no
concepts are used).

strategizedLockingRuntime. cpp
strategizedLockingCompileTimeWithConcepts.cpp



https://godbolt.org/z/aMPaPaToc
https://godbolt.org/z/vbn9ePMss
https://godbolt.org/z/MKd3oTMxx

Thread-Save Interface

The thread-save interface extends the critical region to an
object.

* Antipattern: Each member function uses a lock internally.
* The performance of the system goes down.
» Deadlocks appear when two member functions call each other.




Thread-Save Interface

A deadlock due to entangled calls.

struct Critical{

void methodl () {

std::lock guard(mut);

method2 () ; int main () {

Critical crit;

} crit.methodl () ;
void method2 () { }

std::lock guard(mut);

}

std: :mutex mut;




Thread-Save Interface

= Solutions:

= All interface member functions (public) use a lock.

= All implementation member functions (protected and
private) must not use a lock.

» The interface member functions call only implementation member
functions.

threadSafeInterface.cpp



https://godbolt.org/z/6jEa1EhbT

Guarded Suspension

A guarded suspension consists of a lock and a condition,
which has to be fulfilled by the calling thread.

» The calling thread will put itself to sleep if the condition is not
meet.

» The calling thread uses a lock when it checks the condition.
= The lock protects the calling thread from a data race or deadlock.




Guarded Suspension

» Guarded suspension is available in many variations.
= The waiting thread is notified about the state change or asks for
the state change.

= Push principle: condition variables, future/promise pairs, atomics
(C++20), or semaphores (C++20)

= Pull principle: not natively supported in C++
= The acquiring thread tries it only once.

= Not natively supported, but can be implemented using condition
variables, future/promise pairs, or atomics (C++20)

= The waiting thread waits with or without a time limit.
= Condition variables, or future/promise pairs

= The notification is sent to one or all waiting threads.

= Shared futures, condition variables, atomics (C++20), or
semaphores (C++20)

bossWorker.cpp



https://godbolt.org/z/4KMaEPzPG

o

Concurrency Patterns

Synchronization

Patterns

/Dealing with Sharing

= Copied Value
» Thread-Specific Storage
= Future

-

-

/Dealing with Mutation

= Scoped Locking

| = Strategized Locking

* Thread-Safe Interface
= Guarded Suspension

-

Concurrent

Architecture

Active Object

Monitor
Object

Reactor




o —

Active Object

The active object pattern separates the method execution
from the method invocation.

= Each object owns its own thread.
= Each method invocation is stored in an activation list.
= A scheduler triggers the method execution.




o —

Active Object

Proxy:
= Proxy for the member functions on the active object

= Triggers the construction of a request object which goes to the
activation list and returns a future.

= |t runs in the client thread.

Method Request

* Includes all context information to be executed later.
Activation List:

» Has the pending requests objects.

= Decouples the client from the Active Object thread.
Scheduler:

* Runs in the thread of the Active Object.
= Decides with request from the Activation List is executes.




o —

Active Object

= Servant:
= Implements the member functions of the active objects.
= Supports the interface of the Proxy.

= Future:
= |s created by the Proxy.
* |s only necessary if the request objects returns a result.
= The client uses the future to get the result of the request object.




o —

Active Object

Dynamic Behavior

1. Request construction and scheduling:
» The client invokes the method on the proxy.
» The proxy creates a request and passes it to the scheduler.

» The scheduler enqueues the request on the activation list
and returns a future to the client if the request returns
something.

2. Member function execution
» The scheduler determines which request becomes runnable.

* |t removes the request from the activation list and dispatches
it to the servant.

3. Completion:
= Stores eventually the result of the request object in the future.

= Destructs the request object and the future when the client
has the result.




sd Active Object ~

Client Proxy Future Activation ‘Scheduler Request Servant
List
method()
4>
t
create() >
future
create(fufure)
requést
¢ :
enqueue(request)
< -
- H dequeue()
request
t
execu eQ»‘_
method()
result
setRésuIt(result)
- ;
B
&
tR It
getResult() > ‘ < ||
result
<]
Client Thread Active Object Thread




o —

Active Object

Advantages: Disadvantages:

= Only the access to the activation = If the member function execution

list has to be synchronized IS too fine-grained, the indirection
= Clear separation of client and may cause significant overhead.
server = The asynchronous member
= Improved throughput due to the function execution and the various
asynchronous execution execution strategies make the

» The scheduler can use various system quite difficult to debug.

execution policies.

activeObject.cpp



https://godbolt.org/z/qfe55P9jW

o

Concurrency Patterns

Synchronization Concurrent
Patterns Architecture
e : . : B\
Dealing with Sharing
= Copied Value Active Object
| = Thread-Specific Storage
= Future
- J Monitor
(o~ 1s : : Object
Dealing with Mutation
= Scoped Locking
| = Strategized Locking

» Thread-Safe Interface Reactor
= Guarded Suspension

- J




o —

Monitor Object

The monitor object synchronizes the access to an object so
that at most one member function can run at any moment in

time.

= Each object has a monitor lock and a monitor condition.

= The monitor lock guarantees that only one client can
execute a member function of the object.

= The monitor condition notifies the waiting clients.




Monitor Object

class Monitor Object/
Client Monitor Object

" + syncMethod1()
L. + syncMethod?2()
+ syncMethod...()
+ syncMethodN()

/ \1*

Monitor Lock Monitor Condition
+ lock() + notify()
+ unlock() +  wait()




o —

Monitor Object

Monitor Object:
= Support member functions, which can run in the thread of the client.

Synchronized Methods:
» |nterface member functions of the monitor object.
* At most, one member function can run at any point in time
= The member functions should apply the thread-safe interface pattern.

Monitor Lock:

= Each monitor object has a monitor lock.

= Guarantees exclusive access to the member functions.
Monitor Condition:

=  Allows various threads to store their member function invocation.

= \When the current thread is done with its member function execution
the next thread is awoken.




Monitor Object .

Advantages: Disadvantages:

= The synchronization is » The synchronization mechanism
encapsulated in the and the functionality are strongly
Implementation. coupled and can, therefore, not

= The member function execution easily be changed.
IS automatically stored and » When the synchronized member
performed. functions invoke an additional

= The monitor object is a simple member function of the monitor
scheduler. object, a deadlock may happen.

monitorObject.cpp
monitorObjectCpp20.cpp



https://godbolt.org/z/eTqeqM3K6
https://godbolt.org/z/W53n7cMjj

o

Concurrency Patterns

Synchronization Concurrent
Patterns Architecture
e : . : B\
Dealing with Sharing
= Copied Value Active Object
| = Thread-Specific Storage
= Future
- J Monitor
(o~ 1s : : Object
Dealing with Mutation
= Scoped Locking
| = Strategized Locking

» Thread-Safe Interface Reactor
= Guarded Suspension

- J




o —

Reactor

The Reactor pattern is an event-driven framework to
demultiplex and dispatch service requests concurrently onto
various service providers.

* For each supported service type implement an event
handler that fulfils the specific client request.

= Register this service handler within the Reactor.

» The Reactor uses an event demultiplexer to wait
synchronously on all incoming events.

* When an event arrives, the Reactor is notified and
dispatches it to the specific service.




Reactor

|
class Reactor /

Reactor Event Handler

| dispatches | ’

+ handle_events() + handle_event()
+ register _handler() ‘ owns + get _handle()
+ remove_handler() Handle ’
4 W

notifies

«use»
\i/

Syncronous Event Concrete Event Handler Concrete Event Handler B

Demuxer - A
+ handle_event()

+ get handle()

+ handle_event()

+ select()
+ get handle()




o —

Reactor
Advantages: Disadvantages:
= A clear separation of framework =  Requires an event demultiplexing
and application logic. system call.
= The Reactor can be ported to = Along-running event handler can
various platforms, because the block the Reactor.
underlying event demultiplexing * The inversion of control makes
functions are widely available. testing and debugging more difficult.

" The separation of interface and
implementation enables easy
adaption or extension of the
services.

= QOverall structure supports the
concurrent execution.

reactor.cpp




Reactor

rainer : bash — Konsole <2>

File  Edit View Bookmarks Settings  Help
rainer : bash — Konsole <3> i rainer@seminar:~> telnet 127.0.0.1 4711

File Edit View Bookmarks Settings  Help Trying 127.0.0.1...
Connected to 127.0.0.1.

rainer@seminar:~> reactor ]
Escape character is '*]'.

AC
Rainer
rainer@seminar:~> l ' Ra' €
ainer
Grimm
Grimm

Connection closed by foreign host.
rainer@seminar:~> [

rainer : bash — Konsole

File Edit View Bookmarks  Settings  Help ) bash — K I
rainer : bash — Konsole <2

rainer@seminar:~> more reactorOutput.txt
File  Edit View Bookmarks Settings  Help

Rainerl
Grimml rainer@seminar:~> telnet 127.9.0.1 4712
rainer@seminar:~> [ Trying 127.0.0.1...
l Connected to 127.0.0.1.
Escape character is '*]'.
Rainerl
Grimml

Connection closed by foreign host.
rainer@seminar:~> Jj




o

Concurrency Patterns

Synchronization Concurrent
Patterns Architecture
e : . : B\
Dealing with Sharing
= Copied Value Active Object
| = Thread-Specific Storage
= Future
N = Monitor
. . . Object
Dealing with Mutation J
= Scoped Locking
| = Strategized Locking

» Thread-Safe Interface Reactor
= Guarded Suspension

- J




o

= Concurrency with Modern C++ (50 % off during the
CppCon2021)

Concurrency Patterns

Concurrency with Modern C++

‘What every professional C++ pregrammer shoukl know about concumancy.

relaxed

shrare lock

fencelI l,i\égrgc

1que Iock X atom1cs
% JX

-----------------

n ‘;‘.I,
¢ 1"' mn :‘xs.:
H Jf,-.,::‘.l _local
é\,& Rainer
y f? Grimm
S;’?' ModemesCpp.com



https://leanpub.com/concurrencywithmodernc/c/RkLJ8CTGGIo2

"Rainer Grimm

Training, Coaching, and
. Technology Consulting

www.ModernesCpp.net



http://www.modernescpp.com/
http://www.modernescpp.net/

