
Active Object

The Active Object pattern separates the member function execution 

from the member function call.

▪ Each object has its thread.

▪ A member function call is stored in a queue (activation list). 

▪ A scheduler triggers the member function call.



Active Object

Proxy

▪ Proxy for the member functions on the Active Object

▪ Triggers the construction of a request object which goes to the Activation List 

and returns a future

▪ It runs in the client thread

Member Function Request

▪ Includes all context information to be executed later

Activation List 

▪ Has the pending requests objects

▪ Decouples the client from the Active Object thread

Scheduler

▪ Runs in the thread of the Active Object

▪ Decides witch request from the Activation List is executed



Active Object

▪ Servant

▪ Implements the member function of the Active Object

▪ Supports the interface of the Proxy

▪ Future

▪ Is created by the Proxy.

▪ Is only necessary if the request object returns a result

▪ The client uses the Future to get the result of the request object

activeObject.cpp



Active Object



Active Object

Advantages:

▪ Only the access to the Active 

Object must be synchronized 

▪ Clear separation between client 

and server

▪ Improved system throughput due 

to asynchronous execution 

▪ The scheduler can implement 

different execution strategies for 

member function processing.

Disadvantages:

▪ If the member function calls are 

too fine-granular, relatively high 

overhead results from the 

indirection

▪ Due to the asynchronous member 

function processing and the 

different execution strategies, the 

system can be difficult to debug 


	Slide 1: Active Object
	Slide 2: Active Object
	Slide 3: Active Object
	Slide 4: Active Object
	Slide 5: Active Object

