e

Thread-Safe Initialization of Data

Read only must only to be initialized in a thread-safe way.

=) The expensive synchronization with locks is not necessary.

» C++ offers three possibilities

= Constant expressions
= The function std::call once incombination with the std: :once flag

= Static variables with block scope

Constant Expressions

Constant expression

= Will be initialized during compile time.
= Can be user-defined types if they are simple enough.

struct MyDouble{
constexpr MyDouble (double v): val(v){}
constexpr double getValue(){ return val; }
private:

double wval
Y

constexpr MyDouble myDouble (10.5);

std::cout << myDouble.getValue () << std::endl;

std::call once and std::once flag

The function std::call once and the flag std::once flag.

= std::call once registers a callable unit.

= std::once flag guarantees that only one of the registered functions will be
exactly called once.

vold initSharedDataFunction(){ ... }

std::once flag initSharedDataFlag;

std::call once(initSharedDataFlag, i1nitSharedDataFunction);

safelInitializationCallOnce.cpp

e

Static Variables

The C++11 runtime guarantees that scoped static variables will be initialized in a
thread-safe way.

void blockScope () {

static int mySharedDataInt= 2011;

safelInitializationStatic.cpp

