e

Locks

" std::lock guard and std::unique lock manage the lifetime of the

their mutex according to the RAIl-Idiom.
* Needs the header <mutex>.

= RAIlI-Idiom (Resource Acquisition Is Initialization)
= The lifetime of a resource is bound to an automatic object.

= The resource will be initialized in the constructor of the object; released in the destructor
of the object.

* The RAIl-Idiom is often used in C++: Smart pointer.

W\

() In case the lock goes out of scope, the resource will be

' immediately released.

—z

std::lock guard I

std::lock guard Iis for the simple use case.

» std::lock guard

Automatically locks the mutex in its constructor and releases it in its destructor.
» |s cheaper to use than its more powerful brother std: :unique lock.

std: :mutex myMutex;
auto res = getVar();

{

std::lock guard<std::mutex> myLock (myMutex) ;

sharedVariable = res;

std::unique lock I

Funcion |oewrgion

lk.lock () Locks the associated mutex.
lk.unlock () Releases the associated mutex.
lk.try lock(), Ik tries to lock the mutex.

lk.try lock for(rel time),
lk.try lock until (abs time)

lk.release () Releases the mutex without releasing it.
lk.swap (1k2), std::swap(lk,1k2) Swaps the locks.

lk.mutex () Returns a pointer to the associated mutex.
lk.owns lock () Tests if the lock has a mutex.

std::lock(...) Locks an arbitrary number of mutex atomically.

In C++14 thereisa std: :shared timed mutex.
#You can implement reader-writer locks in combination with std: : shared lock.

uniquelLock.cpp
readerWriterLock.cpp

