
Constructors

▪ Are special member functions for instantiation of an object.

▪ Will be automatically called or can be triggered by a new or new[].

▪ Have the same name as the class and return nothing.

▪ Can be defined inside or outside the class.

▪ Are typically overloaded to instantiate an object in different ways.

Default

▪ Default constructor

▪ Needs no argument. Can have default values for each parameter

▪ Can be called in two variations.

▪ Will be automatically generated by the constructor if possible.

▪ Invokes automatically all constructors of the base classes and the attributes.

The compiler needs the default-constructor to automatically create instances.

Account account;

Account* p = new Account;

Copy

▪ Copy constructor

▪ Expects a constant lvalue reference to an instance of the class.

▪ Copies all arguments.

▪ The Object and other has afterwards the same value.

class Account{

public:

Account(const Account& other);

};

Move

▪ Move constructor

▪ Expects a non-constant rvalue reference to an instance of the class

▪ Moves all arguments

▪ other is afterwards in a moved-from state to reuse it you have to initialize it

class Account{

public:

Account(Account&& other);

};

Explicit Constructor

▪ Explicit declared constructors can not be used implicit.

class Account{

public:

explicit Account(double b): balance(b){}

Account (double b, std::string c): balance(b), cur(c){}

private:

double balance;

std::string cur;

};

Account account0 = 100.0; // ERROR: implicit conversion

Account account1(100.0); // OK: explicit invocation

Account account2 = {100.0, "EUR"}; // OK: implicit conversion

constructorExplicit.cpp

Constructor Delegation

▪ A constructor can call a constructor of the same class.

▪ This constructor must be called in the class initializer.
struct Account{

Account(): Account(0.0){}

Account (double b): balance(b){}

};

▪ Rules:
▪ In case the first constructor is done, the object is generated.

▪ Constructors cannot be invoked recursively.

undefined behavior

▪ Idea:
▪ Shared initialization tasks can be implemented in one constructor, and be used from all others.

constructorInitializer.cpp

constructorDelegation.cpp

