e

Condition Variables

Condition variables enable it to synchronize threads.

= Typical use cases
= Sender — receiver workflow
= Producer — consumer workflow

" std::condition var
= Needs the header <condition var>.
= Can play the role of the sender and of the receiver.

Ly

@\5 To synchronize threads, tasks are often the better choice.

v

N}
=




T

Condition Variables

= Sender sends a notification.

Vember Function

cv.notify one () Notifies one waiting thread

cv.notify all() Notifies all waiting threads

= Receiver is waiting for the notification while holding the mutex.

cv.wait (lock, ... ) Waits for the notification
cv.wait_for(lock, relTime, ... ) Waits for the notification for a time period
cv.wait until (lock, absTime, ... ) Waits for the notification until a time point

\

=3~ In order to protect against spurious wakeup and lost wakeup, the wait member
function should be used with an additional predicate.

N

.@3

1




e

Condition Variables

Thread 1: Sender Thread 2: Recelver

Waits for its notification while holding the lock
= Gets the lock
» Checks and continues to sleep

Does its work
Releases the lock

= Does its work
= Notifies the receiver

// do the work
{

lock guard<mutex> lck(mut);

ready= true;

) unique lock<mutex>1lck (mut) ;

condVar.notify one(); “ condVar.wait (lck, []{return ready;});

// do the work
}

{

conditionVariable.cpp




