
Condition Variables

Condition variables enable it to synchronize threads.

▪ Typical use cases

▪ Sender – receiver workflow

▪ Producer – consumer workflow

▪ std::condition_var

▪ Needs the header <condition_var>.

▪ Can play the role of the sender and of the receiver. 

To synchronize threads, tasks are often the better choice.



▪ Sender sends a notification.

▪ Receiver is waiting for the notification while holding the mutex.

Condition Variables

In order to protect against spurious wakeup and lost wakeup, the wait member 

function should be used with an additional predicate.

Member Function Description

cv.notify_one() Notifies one waiting thread

cv.notify_all() Notifies all waiting threads

Member Function Description

cv.wait(lock, ... ) Waits for the notification

cv.wait_for(lock, relTime, ... ) Waits for the notification for a time period

cv.wait_until(lock, absTime, ... ) Waits for the notification until a time point



Condition Variables

Thread 1: Sender

▪ Does its work

▪ Notifies the receiver

// do the work

{

lock_guard<mutex> lck(mut);

ready= true;

}

condVar.notify_one();

Thread 2: Receiver

▪ Waits for its notification while holding the lock

▪ Gets the lock

▪ Checks and continues to sleep

▪ Does its work

▪ Releases the lock

{

unique_lock<mutex>lck(mut);

condVar.wait(lck, []{return ready;});

// do the work

}

conditionVariable.cpp


