
Callables

▪ Many algorithms can be parametrized with callables.

▪ Callable

▪ Something that behave like a function

Function, function object, or lambda function

Specialties

▪ In order to modify the elements of a container, you have to use references.

▪ Predicates are special callables that returns boolean values.

Callables

Functions

▪ Simple callable units

▪ Cannot have state

void square(int& i){

i = i * i;

}

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), square);

callableUnitFunction.cpp

Callables

Function objects

▪ are objects that behave like functions.

▪ have an overloaded call operator.

▪ can have state.

In order to use function objects, you have to instantiate them.

struct Square{

void operator()(int& i){

i = i * i;

}

};

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), Square());

callableUnitFunctionObject.cpp

Callables

C++ has predefined function objects

▪ They are defined in the header <functional>.

▪ Help to adjust the default behavior of STL containers.

std::map<int, std::string> myDefaultMap; // std::less<int>

std::map<int, std::string, std::greater<int>> mySpecialMap;

Kind of Function Object Operations

Arithmetic operations plus, minus, multiplies, divides, modulus, negate

Comparison operations equal_to, not_equal_to, less, greater,less_equal, greater_equal

Logical operations logical_not, logical_and, logical_or

Bitwise operations bit_and, bit_or, bit_xor

Callables

Lambda expressions

▪ define their functionality in place.

▪ offer a high optimization potential.

▪ should be concise.

Lambda functions should be the first choice for callables.

std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

std::for_each(myVec.begin(), myVec.end(), [](int& i){i = i * i;});

std::for_each(myVec.begin(), myVec.end(), [](int i){

std::cout << i << " ";

});

callableUnitLambda.cpp

