Callables

= Many algorithms can be parametrized with callables.

= Callable

= Something that behave like a function
» Function, function object, or lambda function

Specialties
("7 = |n order to modify the elements of a container, you have to use references.

\ s

—z

(17
¥ = Predicates are special callables that returns boolean values.




Callables

Functions

= Simple callable units
= Cannot have state

void square (inté& 1) {
i=1* 1i;

}

std::vector<int> myVeci{l, 2, 3, 4, 5, 6, 7, 8, 9, 10};
std::for each(myVec.begin(), myVec.end(), square);

callableUnitFunction.cpp




Callables

Function objects

= are objects that behave like functions.
= have an overloaded call operator.
* can have state.

struct Square{
volid operator () (inté& 1) {
i=1 * iy
}
} i
std::vector<int> myVec{l, 2, 3, 4, 5, 6, 7, 8, 9, 10};
std::for each(myVec.begin(), myVec.end(), Square());

In order to use function objects, you have to instantiate them.

callableUnitFunctionObject.cpp




Callables

C++ has predefined function objects

» They are defined in the header <functional>.
» Help to adjust the default behavior of STL containers.

std: :map<int, std::string> myDefaultMap; // std::less<int>
std: :map<int, std::string, std::greater<int>> mySpecialMap;

Arithmetic operations plus, minus, multiplies, divides, modulus, negate
Comparison operations equal to, not equal to, less, greater,less equal, greater equal
Logical operations logical not, logical and, logical or

Bitwise operations bit and, bit or, bit xor




Callables

Lambda expressions

= define their functionality in place.
= offer a high optimization potential.
= should be concise.

std: :vector<int> myVec{l, 2, 3, 4, 5, o6, 7, 8, 9, 10};

std::for each(myVec.begin(), myVec.end(), [] (int& 1){1 = 1 * 1;});
std::for each (myVec.begin(), myVec.end(), [] (int 1) {
std::cout << i1 << " ";

1) ;

W\

@ Lambda functions should be the first choice for callables.

AV

callableUnitLambda.cpp




